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Preface

This book follows the course IA168 Algorithmic Game Theory taught by assoc. prof. Brázdil on FI MUNI
as it appeared in Fall 2023. All of this course is almost 1-to-1 based on his materials and I only typesetted
it into a (in my opinion) more readable format.

In recent years, huge amount of research has been done at the borderline between game theory and computer
science, largely motivated by the emergence of the Internet. The aim of the course is to provide students
with basic knowledge of fundamental game theoretic notions and results relevant to applications in computer
science. The course will cover classical topics, such as general equilibrium theory and mechanism design,
together with modern applications to network routing, scheduling, online auctions etc. We will mostly con-
centrate on computational aspects of game theory such as complexity of computing equilibria and connections
with machine learning.

Some notes:

• more mathematically oriented than typically FI course
• lectures should be enough to pass the course

All slides will be available.

Evaluation

Homework is mandatory and there are 3 homework assignments. Also there is a threshold for pass/not
pass of the homework.

There are public homeworks from last years

Afterwards follows an oral exam:

• there will be at least 3 or 4 exam dates every week

– there are as many tries as we want

• we need to know everything (and it’s not a joke :))
• at least 1h for the exam (but very possibly more)
• precise mathematical communication needed for the exam
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Overview of the course

This is a theoretical course aimed at some fundamental results of game theory, often related to computer
science

• We start with strategic form games (such as the Prisoner’s dilemma), investigate several solution
concepts (dominance, equilibria) and related algorithms.

• Then we consider repeated games which allow players to learn from history and/or to react to
deviations of the other players.

• Subsequently, we move on to incomplete information games and auctions.
• Finally, we consider (in)efficiency of equilibria (such as the Price of Anarchy) and its properties on
important classes of routing and network formation games.

• Remaining time will be devoted to selected topics from extensive form games, games on graphs etc.
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1 Introduction & Outline

1.1 What is game theory?

One of the possible definitions of Game Theory

The study of mathematical models of conflict and cooperation between intelligent rational decision-
makers

It is effectively a multi-objective optimization, where multiple loss functions need to be optimized. The
algorithmic part means that there will be algorithms for finding concepts discussed.

1.2 Prisoner’s dilemma

Two suspects of a serious crime are arrested and imprisoned. Police have enough evidence of only petty
theft, and to nail the suspects for the serious crime they need testimony from at least one of them. The
suspects are interrogated separately without any possibility of communication Each of the suspects is
offered a deal:
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• If he confesses (𝐶) to the crime, he is free to go.
• The alternative is not to confess, that is remain silent (𝑆)

One prisoner is said to be a row player and the other is a column player and it following table there are
payoffs row the row and column players.

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Rational “row” suspect (or his adviser) may reason as follows:

• If my colleague chooses 𝐶 , then playing C gives me −5 and playing 𝑆 gives −20.
• If my colleague chooses 𝑆, then playing C gives me 0 and playing 𝑆 gives −1

In both cases, 𝐶 is clearly better (it strictly dominates the other strategy). If the other suspect’s reasoning
is the same, both choose C and get a 5-year sentence

There is a solution (𝑆, 𝑆) which is better for both players but needs some “central” authority to control
the players

This suboptimality will be visible throughout the course.

1.3 Nash equilibria

1.3.1 Battle of Sexes

A couple agreed to meet this evening, but cannot recall if they will be attending the opera or a football
match. One of them wants to go to the football game. The other one to the opera. Both would prefer to
go to the same place rather than different ones.

Battle of Sexes can be modeled as a game of two players (the couple) with the following payoffs.

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

Apparently, no strategy of any player is dominant. So what could be a “solution”? Note that whenever
both players play 𝑂, then neither of them wants to unilaterally deviate from his strategy! Here, (𝑂, 𝑂) is
an example of a Nash equilibrium (as is (𝐹 , 𝐹 )).

8



Interpretation

This can be interpreted as advice to both players that they would have to deviate from.

The thinking process is the same as in physics. First, we make a model of a social situation then make a
prediction and validate it.

1.3.2 Rock, Paper, Scissors

Again, the existence of a Nash equilibrium is not guaranteed - as can be seen in Rock, Paper, Scissors

𝑅 𝑃 𝑆
𝑅 (0, 0) (−1, 1) (1, −1)
𝑃 (1, −1) (0, 0) (−1, 1)
𝑆 (−1, 1) (1, −1) (0, 0)

This game is a zero-sum game - whatever one player wins, the other one loses.

We can further generalize the players’ behavior of the game into mixed strategies: Each player plays each
pure strategy with probability 1

3 . The expected payoff of each player is 0 (even if one of the players
changes his strategy, he still gets 0!).

It is always assumed that each player tries to maximize their payoff (they’re playing rationally).

1.4 Dynamic Games

So far we have seen games in strategic form that are unable to capture games that unfold over time (such
as chess).

For such purpose, we need to use extensive form games. So it can be said that they are iterated or repeated
games.
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In this tree a player P1 chooses an action 𝐴 or 𝐵. Then the player P2 follows by choosing from actions
𝐶, 𝐷, 𝐸, 𝐹 , 𝐺.

1.4.1 Imperfect information

Some decisions in the game tree may happen by chance and are controlled by neither player (e.g. Poker,
Backgammon, etc.)

Sometimes a player may not be able to distinguish between several “positions” because he does not know
all the information in them (Think a card game with the opponent’s cards hidden). For this purpose, we
will introduce so-called information sets (and these games are imperfect information games).

1.4.2 Incomplete information

In all previous games, the players knew all the details of the game they played, and this fact was a “common
knowledge”. This is not always the case.

1.4.2.1 Sealed Bid Auction

Two bidders are trying to purchase the same item.

• The bidders simultaneously submit bids 𝑏1 and 𝑏2 and the item is sold to the highest bidder at his
bid price (first price auction)

• The payoff of the player 1 (and similarly for player 2) is calculated by

𝑢1(𝑏1, 𝑏2) =
⎧
⎨
⎩

𝑣1 − 𝑏1 𝑏1 > 𝑏2
1
2 (𝑣1 − 𝑏1) 𝑏1 = 𝑏2
0 𝑏1 < 𝑏2

Here 𝑣1 is the private value that player 1 assigns to the item and so player 2 does not know 𝑢1.
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1.5 Inefficiency of Equilibria

In Prisoner’s Dilemma, the selfish behavior of suspects (the Nash equilibrium) results in a somewhat
worse-than-ideal situation

Defining a welfare function 𝑊 which to every pair of strategies assigns the sum of payoffs, we get
𝑊(𝐶, 𝐶) = −10 but 𝑊(𝑆, 𝑆) = −2.

Such choice of a welfare function is generally arbitrary, but results vary depending on this
choice.

The ratio 𝑊(𝐶,𝐶)
𝑊 (𝑆,𝑆) = 5measures the inefficiency of “selfish-behavior” (𝐶, 𝐶) w.r.t. the optimal “centralized”

solution. Price of Anarchy is the maximum ratio between values of equilibria and the value of an optimal
solution.

1.5.1 Selfish routing

Consider a transportation system where many agents are trying to get from some initial location to a
destination. Consider the welfare to be the average time for an agent to reach the destination.

There are two versions:

• “Centralized”: A central authority tells each agent where to go.
• “Decentralized”: Each agent selfishly minimizes his travel time.

Price of Anarchy measures the ratio between average travel time in these two cases.

Problem: Bound the price of anarchy over all possible routing games?

1.6 Games in Computer Science

Game theory is a core foundation of mathematical economics. But what does it have to do with CS?

• Games in AI: modeling of “rational” agents and their interactions.
• Games in machine learning: Generative adversarial networks (GANs), reinforcement learning
• Games in Algorithms: several game theoretic problems have a very interesting algorithmic status
and are solved by interesting algorithms

• Games in modeling and analysis of reactive systems: program inputs viewed “adversarially”, bisim-
ulation games (the tester is trying to kill the program by weird inputs), etc.

• Games in computational complexity: Many complexity classes are definable in terms of games:
PSPACE, polynomial hierarchy, etc.

• Games in Logic: modal and temporal logics, Ehrenfeucht-Fraisse games, etc.
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2 Complete-Information Static Games

2.1 Intuition

Proceed in two steps:

1. Players simultaneously and independently choose their strategies. This means that players play
without observing strategies chosen by other players.

2. Conditional on the players’ strategies, payoffs are distributed to all players.

Complete information means that the following is common knowledge among players:

• all possible strategies of all players,
• what payoff is assigned to each combination of strategies.

Definition 2.1 (Common knowledge). A fact 𝐸 is a common knowledge among players {1, … , 𝑛} if for
every sequence 𝑖1, … , 𝑖𝑘 ∈ {1, … , 𝑛} we have that 𝑖1 knows that 𝑖2 knows that … 𝑖𝑘−1 knows that 𝑖𝑘 knows
𝐸.

The goal of each player is to maximize his payoff (and this fact is a common knowledge).

2.2 Strategic-Form games

To formally represent static games of complete information we define strategic-form games

Definition 2.2 (Strategic-form games). A game in strategic-form (or normal-form) is an ordered triple
𝐺 = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ), in which:

• 𝑁 = {1, … , 𝑛} is a finite set of players;

• 𝑆𝑖 is a set of (pure) strategies of player 𝑖, for every 𝑖 ∈ 𝑁 .

A strategy profile 𝑠 is a vector of strategies of all players 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛.
We denote the set of all strategy profiles by 𝑆 = 𝑆1 × ⋯ × 𝑆𝑛;

• 𝑢𝑖 ∶ 𝑆 → ℝ is a function associating each strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 with the payoff 𝑢𝑖(𝑠) to
player 𝑖, for every player.
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Definition 2.3 (Zero-sum games). A zero-sum game 𝐺 is one in which for all 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 we have
∑𝑖∈𝑁 𝑢𝑖(𝑠) = 0

Two examples are provided in the slides Prisoners’ dilemma and Cournot Doupoly.

2.3 Solution Concepts

A solution concept is a method of analyzing games with the objective of restricting the set of all possible
outcomes to those that are more reasonable than others. We will use the term equilibrium for any one of
the strategy profiles that emerge as one of the solution concepts’ predictions.

We follow the approach of Steven Tadelis here, even though it is not completely standard.

Tip

Nash equilibrium is a solution concept. That is, we “solve” games by finding Nash equilibria and
declaring them to be reasonable outcomes.

2.4 Assumptions

Throughout the lecture, we assume that:

1. Players are rational: a rational player is one who chooses his strategy to maximize his payoff.
2. Players are intelligent: An intelligent player knows everything about the game (actions and pay-

offs) and can make any inferences about the situation that we can make.
3. Common knowledge: The fact that players are rational and intelligent is common knowledge

among them.
4. Self-enforcement: Any prediction (or equilibrium) of a solution concept must be self-enforcing.

Here 4th assumption implies non-cooperative game theory: Each player is in control of his actions, and
he will stick to an action only if he finds it to be in his best interest

2.5 Evaluating Solution Concepts

In order to evaluate our theory as a methodological tool we use the following criteria:

1. Existence (i.e., how often does it apply?): The solution concept should apply to a wide variety of
games.

• E.g. We shall see that mixed Nash equilibria exist in all two-player finite strategic-form games.
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2. Uniqueness (How much does it restrict behavior?): We demand our solution concept to restrict
the behavior as much as possible.

• E.g. So-called strictly dominant strategy equilibria are always unique as opposed to Nash eq.

2.5.1 Pure Strategies

We will consider the following solution concepts:

• strict dominant strategy equilibrium;
• iterated elimination of strictly dominated strategies (IESDS);
• rationalizability;
• Nash equilibria.

Note

These concepts will be first discussed in terms of pure strategies only at first.
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3 Solution concepts

3.1 Domination of strategies

Let 𝑁 = {1, … , 𝑛} be a finite set and for each 𝑖 ∈ 𝑁 let 𝑋𝑖 be a set. Moreover, let 𝑋 ∶= ∏𝑖∈𝑁 𝑋𝑖 =
{(𝑥1, … , 𝑥𝑛)|𝑥𝑗 ∈ 𝑋𝑗 , 𝑗 ∈ 𝑁 }. We shall now introduce the following notation:

• for 𝑖 ∈ 𝑁 we define 𝑋−𝑖 ∶= ∏𝑗≠𝑖 𝑋𝑗 , i.e.,

𝑋−𝑖 = {(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛)|𝑥𝑗 ∈ 𝑋𝑗 , ∀𝑗 ≠ 𝑖} ;
• an element of 𝑋−𝑖 will be denoted by

𝑥−𝑖 = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛);
as a slight abuse of notation we write (𝑥𝑖, 𝑥−𝑖) to denote (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) ∈ 𝑋 .

Definition 3.1 (Strictly dominated strategies). Let 𝑠𝑖, 𝑠′𝑖 ∈ 𝑆𝑖 be strategies of player 𝑖 as per Definition 2.2.
Then 𝑠′𝑖 is strictly dominated by 𝑠𝑖 (write 𝑠𝑖 ≻ 𝑠′𝑖 ) if for any possible combination of the other players’
strategies, 𝑠−𝑖 ∈ 𝑆−𝑖, we have

𝑢𝑖(𝑠𝑖, 𝑠−𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖)
for all 𝑠−𝑖 ∈ 𝑆−𝑖.

Conjecture 3.1. An intelligent and rational player will never play a strictly dominated strategy.

Proof. Clearly, intelligence implies that the player should recognize dominated strategies, and rationality
implies that the player will avoid playing them.

Definition 3.2 (Strictly dominant strategy). We say 𝑠𝑖 ∈ 𝑆𝑖 is strictly dominant if every other pure strategy
of player 𝑖 is strictly dominated by 𝑠𝑖. Similarly, we say 𝑠𝑖 ∈ 𝑆𝑖 is strictly dominated in game 𝐺 if there exists
a pure strategy 𝑠′𝑖 ∈ 𝑆𝑖 such that 𝑠′𝑖 ≻ 𝑠𝑖.

Observe that every player has at most one strictly dominant strategy and that strictly dominant strategies
do not have to exist. Furthermore, we can make a similar claim to Conjecture 3.1:

Conjecture 3.2. Any rational player will play the strictly dominant strategy if it exists.

Definition 3.3 (Strictly dominant strategy equilibrium). A strategy profile 𝑠 ∈ 𝑆 is a strictly dominant
strategy equilibrium if 𝑠𝑖 is strictly dominant for all 𝑖 ∈ 𝑁 .

Corollary 3.1. If the strictly dominant strategy equilibrium exists, it is unique and rational players will
play it.
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3.1.1 Examples

Example 3.1 (Prisoner’s dilemma). In the Prisoner’s dilemma, (𝐶, 𝐶) is the strictly dominant strategy
equilibrium.

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Example 3.2 (Battle of Sexes). In the Battle of Sexes, no strictly dominant strategies exist.

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

Indiana Jones and the Last Crusade

Indiana Jones, his father, and the Nazis have all converged at the site of the Holy Grail. The two Joneses
refuse to help the Nazis reach the last step. So the Nazis shoot Indiana’s dad. Only the healing power of
the Holy Grail can save the senior Dr. Jones from his mortal wound. Suitably motivated, Indiana leads
the way to the Holy Grail. But there is one final challenge. He must choose between literally scores of
chalices, only one of which is the cup of Christ. While the right cup brings eternal life, the wrong choice
is fatal. The Nazi leader impatiently chooses a beautiful gold chalice, drinks the holy water, and dies
from the sudden death that follows from the wrong choice. Indiana picks a wooden chalice, the cup of
a carpenter. Exclaiming “There’s only one way to find out” he dips the chalice into the font and drinks
what he hopes is the cup of life. Upon discovering that he has chosen wisely, Indiana brings the cup to
his father and the water heals the mortal wound.
In this scene, Indy behaved “suboptimally (irrationally)”, because he overlooked his strictly domi-
nant strategy, which would be to give the water to his father without tasting. Here are the possible
outcomes:

• If Indiana has chosen the right cup, his father is still saved.
• If Indiana has chosen the wrong cup, then his father dies but Indiana is spared.

Testing the cup before giving it to his father doesn’t help, since if Indiana has made the wrong
choice, there is no second chance – Indiana dies from the water and his father dies from the wound.

3.2 Iterated Strict Dominance in Pure Strategies

We know that, by Conjecture 3.1, no rational player ever plays strictly dominated strategies. As each
player knows that each player is rational, each player knows that his opponents will not play strictly
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dominated strategies and thus all opponents know that effectively they are facing a “smaller” game. As
rationality is common knowledge, everyone knows that everyone knows that the game is effectively
smaller. Thus everyone knows, that nobody will play strictly dominated strategies in the smaller game
(and such strategies may indeed exist). Because it is common knowledge that all players will perform
this kind of reasoning again, the process can continue until no more strictly dominated strategies can be
eliminated.

This principle (or reasoning) yields the Iterated Elimination of Strictly Dominated Strategies.

Definition 3.4 (Iterated Elimination of Strictly Dominated Strategies). Define a sequence 𝐷0𝑖 , 𝐷1𝑖 , 𝐷2𝑖 , …
of strategy sets of player 𝑖. Also denote by 𝐺𝑘𝐷𝑆 the game obtained from 𝐺 by restricting to 𝐷𝑘𝑖 , 𝑖 ∈ 𝑁 . We
shall call the following algorithm “Iterated Elimination of Strictly Dominated Strategies” :

1. Initialize 𝑘 = 0 and 𝐷0𝑖 = 𝑆𝑖 for each 𝑖 ∈ 𝑁 .
2. For all players 𝑖 ∈ 𝑁 : Let 𝐷𝑘+1𝑖 be the set of all pure strategies of 𝐷𝑘𝑖 that are not strictly dominated

in 𝐺𝑘𝐷𝑆 .
3. If 𝐷𝑘+1𝑖 = 𝐷𝑘𝑖 for all players 𝑖 ∈ 𝑁 , then stop. Otherwise, let 𝑘 ∶= 𝑘 + 1 and go to 2.

We say that 𝑠𝑖 ∈ 𝑆𝑖 survives IESDS if 𝑠𝑖 ∈ 𝐷𝑘𝑖 for all 𝑘 = 0, 1, 2, … (or until stop).

Caution

I modified the algorithms (or definitions) 3.4 and 3.9 to stop when nothing changes across two
iterations. In the slides, this condition is not present.
This change was motivated to make each of these processes stop at some point when no further
iterations are necessary. But just to be sure, maybe use/remember the original/official definitions.

Definition 3.5. A strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 is an IESDS equilibrium if each 𝑠𝑖 survives IESDS.
A game is IESDS solvable if it has a unique IESDS equilibrium.

Remark. If all 𝑆𝑖 are finite, then in 2. we may remove only some of the strictly dominated strategies (not
necessarily all). The result is not affected by the order of elimination since strictly dominated strategies
remain strictly dominated even after removing some other strictly dominated strategies.

3.2.1 Examples

Example 3.3. In the Prisoner’s dilemma, the strategy profile (𝐶, 𝐶) is the only one surviving the first
round of IESDS.

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)
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Example 3.4. In the Battle of Sexes, all strategies survive all rounds (i.e. IESDS says: “anything may
happen, sorry”)

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

Exercise 3.1. Presume the game is given by the Table 3.5:

Table 3.5: Table defining a game

𝐿 𝐶 𝑅
𝐿 (4, 3) (5, 1) (6, 2)
𝐶 (2, 1) (8, 4) (3, 6)
𝑅 (3, 0) (9, 6) (2, 8)

Solution. Surely, from the Definition 3.4 follows

𝐷01 = 𝑆1 = {𝐿, 𝐶, 𝑅} , 𝐷02 = 𝑆2 = {𝐿, 𝐶, 𝑅} .

Notice that for player 2, playing 𝐶 is strictly dominated by 𝑅. On the other hand, in this iteration, there
are no strictly dominated strategies for the first player. Therefore next iteration reads

𝐷11 = 𝐷01 = {𝐿, 𝐶, 𝑅} , 𝐷12 = {𝐿, 𝑅}
and the table transforms to

[
(4, 3) (6, 2)
(2, 1) (3, 6)
(3, 0) (2, 8)

] .

Now the strategy 𝐿 dominates both 𝐶, 𝑅 for player 1. For player 2, no strategy is strictly dominant. Now
the second iteration has the form

𝐷21 = {𝐿} , 𝐷22 = {𝐿, 𝑅}
with the table

[(4, 3) (6, 2)] .

In this case, the 𝑅 strategy is strictly dominated by 𝐿 for the second player and we get

𝐷31 = {𝐿} , 𝐷32 = {𝐿}

Here, the iterations stop and the strategies 𝐿 are the only one that survives IESDS (for both players).
Hence the (𝐿, 𝐿) is the IESDS equilibrium of this game.
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3.2.2 Political Science Example: Median Voter Theorem

In this example of a two-player game by Hotelling (1929) and Downs (1957), we have

𝑁 = {1, 2} , 𝑆𝑖 = {1, 2, … , 10} ,
where each player (a candidate) plays his position on a political and ideological spectrum, see Figure 3.1
– 10 voters belong to each position (or in real life, 10% of voters belong to each position). Voters then
vote for their closest candidate and if there is a tie, then half the votes go to each candidate. The payoff
in this game is the number of voters for the candidate, and each candidate (selfishly) strives to maximize
this number.

Figure 3.1: Illustration of the spectrum

Here in 𝐺 = 𝐺0𝐷𝑆 surely, 1 and 10 are the (only) strictly dominated strategies ⟹ 𝐷11 = 𝐷12 = {2, … , 9}.
Then again, in 𝐺1𝐷𝑆 the 2 and 9 are the (only dominated strategies) ⟹ 𝐷21 = 𝐷22 = {3, … , 8}. If we repeat
this, only strategies 5 and 6 emerge not dominated and survive IESDS.

3.3 Belief & Best Response

IESDS eliminated apparently unreasonable behavior (leaving “reasonable” behavior implicitly untouched).
What if we rather want to actively preserve reasonable behavior? But a question arises, what is reason-
able? The simple answer is what we believe is reasonable :). To build an intuition, consider the following
situation

• Imagine that your colleague did something stupid

• What would you ask him? Usually something like “What were you thinking?”

• The colleague may respond with a reasonable description of his belief in which his action was (one
of) the best he could do

You may, of course, question the reasonableness of the belief

To formalize this kind of reasoning, we start with the next few definitions.

Definition 3.6 (Belief). A belief of player 𝑖 is a pure strategy profile 𝑠−𝑖 ∈ 𝑆−𝑖 of his opponents.
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Definition 3.7 (Best Response). A strategy 𝑠𝑖 ∈ 𝑆𝑖 of player 𝑖 is a best response to a belief 𝑠−𝑖 ∈ 𝑆−𝑖 if
𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖)

for all 𝑠′𝑖 ∈ 𝑆𝑖.

Conjecture 3.3. A rational player who believes that his opponents will play 𝑠−𝑖 ∈ 𝑆−𝑖 always chooses a best
response to 𝑠−𝑖 ∈ 𝑆−𝑖.

Definition 3.8. A strategy 𝑠𝑖 ∈ 𝑆𝑖 is never best response if it is not a best response to any belief 𝑠−𝑖 ∈ 𝑆−𝑖.

Clearly, a rational player never plays any strategy that is never best response.

Proposition 3.1. If 𝑠𝑖 is strictly dominated for the player 𝑖, then it is never best response.

The opposite, though, does not have to be true in pure strategies. Consider the game given by Table 3.6.

Table 3.6: Counter-example to the opposite of Proposition 3.1

𝑋 𝑌
𝐴 (1, 1) (1, 1)
𝐵 (2, 1) (0, 1)
𝐶 (0, 1) (2, 1)

Here 𝐴 is never best response but it is not strictly dominated either by 𝐵, or by 𝐶 .

3.3.1 Elimination of Stupid Strategies

Using similar iterated reasoning as for IESDS, see Definition 3.4, strategies that are never best response
can be iteratively eliminated.

Definition 3.9 (Rationalizable). Define a sequence 𝑅0𝑖 , 𝑅1𝑖 , … of strategy sets of player 𝑖. Also, denote by
𝐺𝑘𝑅𝑎𝑡 the game obtained from 𝐺 by restricting to 𝑅𝑘𝑖 for 𝑖 ∈ 𝑁 . Consider the following algorithm

1. Initialize 𝑘 = 0 and 𝑅0𝑖 = 𝑆𝑖 for each 𝑖 ∈ 𝑁 .
2. For all players 𝑖 ∈ 𝑁 : Let 𝑅𝑘+1𝑖 be the set of all strategies of 𝑅𝑘𝑖 that are best responses to some

beliefs in 𝐺𝑘𝑅𝑎𝑡 .
3. If 𝑅𝑘+1𝑖 = 𝑅𝑘𝑖 for all players 𝑖 ∈ 𝑁 , then stop. Otherwise, let 𝑘 ∶= 𝑘 + 1 and go to 2.

We say that 𝑠𝑖 ∈ 𝑆𝑖 is rationalizable if 𝑠𝑖 ∈ 𝑅𝑘𝑖 for all 𝑘 = 0, 1, 2, … (or until stop).

Definition 3.10. A strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 is a rationalizable equilibrium if each 𝑠𝑖 rationaliz-
able.

We say that a game is solvable by rationalizability if it has a unique rationalizable equilibrium.
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Warning

For some reason, rationalizable strategies are almost always defined using mixed strategies!

3.3.2 Examples

Example 3.5. In the Prisoners’ dilemma, the strategy profile (𝐶, 𝐶) is the only rationalizable equilibrium.

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Example 3.6. In the Battle of Sexes, all strategies are rationalizable.

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

3.3.3 Cournot Doupoly

Consider a game 𝐺 = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ) with 𝑁 = {1, 2}, 𝑆𝑖 = [0,∞) and payoffs of form

𝑢1(𝑞1, 𝑞2) = 𝑞1(𝜅 − 𝑞1 − 𝑞2) − 𝑞1𝑐1 = (𝜅 − 𝑐1)𝑞1 − 𝑞21 − 𝑞1𝑞2
𝑢2(𝑞1, 𝑞2) = 𝑞2(𝜅 − 𝑞1 − 𝑞2) − 𝑞2𝑐2 = (𝜅 − 𝑐2)𝑞2 − 𝑞22 − 𝑞1𝑞2

For simplicity, we shall assume 𝑐1 = 𝑐2 = 𝑐 and denote 𝜃 = 𝜅 − 𝑐.

Economical background

Cournot competition is an economic model used to describe an industry structure in which compa-
nies compete on the amount of output they will produce, which they decide on independently of
each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was
inspired by observing competition in a spring water duopoly. It has the following features:

• There is more than one firm and all firms produce a homogeneous product, i.e., there is no
product differentiation;

• Firms do not cooperate, i.e., there is no collusion;
• Firms have market power, i.e., each firm’s output decision affects the good’s price;
• The number of firms is fixed;
• Firms compete in quantities rather than prices; and
• The firms are economically rational and act strategically, usually seeking to maximize profit
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given their competitors’ decisions.

In this context, 𝑞𝑖 ∈ 𝑆𝑖 is spent manufacturing time of 𝑖-th firm, 𝑐𝑖 its fixed costs per onemanufactured
product and 𝜅 scales the variable costs based on the total manufactured quantity.

What is a best response of player 1 to a given 𝑞2?

θ

θ

θ/2θ/4

θ/4

θ/2

never best response ⟹ eliminate

never best response
for step 2

Figure 3.2: Diagram for Cournot douploy

Solve 𝜕𝑢1
𝜕𝑞1 = 𝜃 − 2𝑞1 − 𝑞2 = 0, which gives that 𝑞1 = (𝜃 − 𝑞2)/2 is the only best response of player 1 to

𝑞2. Similarly, 𝑞2 = (𝜃 − 𝑞1)/2 is the only best response of player 2 to 𝑞1. Since 𝑞2 ≥ 0 (and therefore
(𝜃 − 𝑞2)/2 ≤ 𝜃/2), we obtain that 𝑞1 is never best response iff 𝑞1 > 𝜃/2 and just as well, 𝑞2 is never best
response iff 𝑞2 > 𝜃/2. Thus 𝑅11 = 𝑅12 = [0, 𝜃/2]. Now, in 𝐺1𝑅𝑎𝑡 , we still have that 𝑞1 = (𝜃 − 𝑞2)/2 is the best
response to 𝑞2, and 𝑞2 = (𝜃 − 𝑞1)/2 the best response to 𝑞1. Since 𝑞2 ∈ 𝑅12 = [0, 𝜃/2], we obtain that 𝑞1 is
never best response iff 𝑞1 ∈ [0, 𝜃/4). Similarly 𝑞2 is never best response iff 𝑞2 ∈ [0, 𝜃/4). In general, after
2𝑘 iterations we have 𝑅2𝑘1 = 𝑅2𝑘2 = [𝑙𝑘 , 𝑟𝑘], where

• 𝑟𝑘 = (𝜃 − 𝑙𝑘−1)/2 for 𝑘 ≥ 1
• 𝑙𝑘 = (𝜃 − 𝑟𝑘)/2 for 𝑘 ≥ 1 and 𝑙0 = 0

Solving the recurrence we obtain

• 𝑙𝑘 = 𝜃/3 − (14)
𝑘 𝜃/3

• 𝑟𝑘 = 𝜃/3 + (14)
𝑘−1 𝜃/6

Hence, lim𝑘→∞ 𝑙𝑘 = lim𝑘→∞ 𝑟𝑘 = 𝜃/3 and thus (𝜃/3, 𝜃/3) is the only rationalizable equilibrium. But does
this mean, that 𝑞𝑖 = 𝜃/3 provide the best outcomes possible?

𝑢1(𝜃/3, 𝜃/3) = 𝑢2(𝜃/3, 𝜃/3) = 𝜃2/9
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No, when we consider 𝑞𝑖 = 𝜃/4, we get

𝑢1(𝜃/4, 𝜃/4) = 𝑢2(𝜃/4, 𝜃/4) = 𝜃2/8,

but this would require cooperation between players (firms).

3.4 IESDS vs Rationalizability in Pure Strategies

Theorem 3.1. Assume that 𝑆 is finite. Then for all 𝑘 we have that 𝑅𝑘𝑖 ⊆ 𝐷𝑘𝑖 (from Definition 3.4 and
Definition 3.9). That is, in particular, all rationalizable strategies survive IESDS.

The opposite inclusion does not have to hold in pure strategies. As a counter-example consider a game
given by a table

Table 3.9: Counter-example to the opposite of Theorem 3.1, see also Table 3.6

𝑋 𝑌
𝐴 (1, 1) (1, 1)
𝐵 (2, 1) (0, 1)
𝐶 (0, 1) (2, 1)

Recall, from Table 3.6, that 𝐴 is never best response but it is not strictly dominated by either 𝐵, or 𝐶 . That
is, 𝐴 survives IESDS but is not rationalizable.

Lemma 3.1. If 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺𝑘𝑅𝑎𝑡 , then 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺.

Proof. Let us prove Lemma 3.1 by induction on 𝑘. For 𝑘 = 0 we have 𝐺𝑘𝑅𝑎𝑡 = 𝐺0𝑅𝑎𝑡 = 𝐺 and the claim holds
trivially.

Now assume that the claim is true for some 𝑘 and that 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺𝑘+1𝑅𝑎𝑡 . Let 𝑠′𝑖 be a best
response to 𝑠−𝑖 in 𝐺𝑘𝑅𝑎𝑡 . Then 𝑠′𝑖 ∈ 𝐺𝑘+1𝑅𝑎𝑡 , since 𝑠′𝑖 is not eliminated from 𝐺𝑘𝑅𝑎𝑡 . However, since 𝑠𝑖 is a best
response to 𝑠−𝑖 in 𝐺𝑘+1𝑅𝑎𝑡 , we get 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖). Thus, by Definition 3.7, 𝑠𝑖 is a best response to 𝑠−𝑖 in
𝐺𝑘𝑅𝑎𝑡 .

By the induction hypothesis, 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺 and the lemma has been proven.

Important

The proof of Theorem 3.1 is not necessary for the final exam!
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Proof. Let us now focus on Theorem 3.1 and prove 𝑅𝑘𝑖 ⊆ 𝐷𝑘𝑖 for all players 𝑖 by induction on 𝑘.
For 𝑘 = 0 we have 𝑅0𝑖 = 𝑆𝑖 = 𝐷0𝑖 by definition (see Definition 3.4 and Definition 3.9).

Assume that 𝑅𝑘𝑖 ⊆ 𝐷𝑘𝑖 for some 𝑘 ≥ 0 and prove that 𝑅𝑘+1𝑖 ⊆ 𝐷𝑘+1𝑖 . Let 𝑠𝑖 ∈ 𝑅𝑘+1𝑖 , then there must be
𝑠−𝑖 ∈ 𝑅𝑘−𝑖 such that 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺𝑘𝑅𝑎𝑡 , as 𝑠𝑖 must have not been eliminated in 𝐺𝑘𝑅𝑎𝑡 . By the
Lemma 3.1, 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺 as well. Also, by the induction hypothesis, 𝑠𝑖 ∈ 𝑅𝑘+1𝑖 ⊆ 𝑅𝑘𝑖 ⊆ 𝐷𝑘𝑖
and 𝑠−𝑖 ∈ 𝑅𝑘−𝑖 ⊆ 𝐷𝑘−𝑖.

However, then 𝑠𝑖 is a best response to 𝑠−𝑖 in 𝐺𝑘𝐷𝑆 , as this follows from the fact, that the “best response”
relationship of 𝑠𝑖 and 𝑠−𝑖 is preserved when removing arbitrarily many other strategies. Thus 𝑠𝑖 is not
strictly dominated in 𝐺𝑘𝐷𝑆 and 𝑠𝑖 ∈ 𝐷𝑘+1𝑖 .

This concludes the proof.

3.5 Nash equilibria

We may raise certain criticisms of previous approaches:

• Strictly dominant strategy equilibria often do not exist;
• IESDS and rationalizability may not remove any strategies.

A typical example is the Battle of Sexes:

Table 3.10: Battle of Sexes

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

Here all strategies are equally reasonable according to the above concepts. But are all strategy profiles
really equally reasonable? Assume that each player has a belief about the strategies of other players. By
Conjecture 3.3, each player plays a best response to his beliefs, so is (𝑂, 𝐹 ) as reasonable as (𝑂, 𝑂) in this
respect? Note that if player 1 believes that player 2 plays 𝑂, then playing 𝑂 is reasonable, and if player 2
believes that player 1 plays 𝐹 , then playing 𝐹 is reasonable. But such beliefs cannot be correct together!
Hence (𝑂, 𝑂) can be obtained as a profile where each player plays the best response to his belief and the
beliefs are correct.

Nash equilibrium can be defined as a set of beliefs (one for each player) and a strategy profile in which
every player plays a best response to his belief and each strategy of each player is consistent with the
beliefs of his opponents.
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Definition 3.11 (Nash Equilibrium). A pure-strategy profile 𝑠∗ = (𝑠∗1 , … , 𝑠∗𝑛 ) ∈ 𝑆 is a (pure) Nash equi-
librium if 𝑠∗𝑖 is a best response to 𝑠∗−𝑖 for each 𝑖 ∈ 𝑁 , that is

𝑢𝑖(𝑠∗𝑖 , 𝑠∗−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠∗−𝑖)

for all 𝑠𝑖 ∈ 𝑆𝑖 and all 𝑖 ∈ 𝑁 .

Note

Note that this definition is equivalent to the previous one in the sense that 𝑠∗−𝑖 may be considered
as the (consistent) belief of player 𝑖 to which he plays a best response 𝑠∗𝑖 .

Example 3.7. In the Prisoner’s dilemma, (𝐶, 𝐶) is the only Nash equilibrium.

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Example 3.8. In the Battle of Sexes, only (𝑂, 𝑂) and (𝐹 , 𝐹 ) are Nash equilibria.

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

In Cournot duopoly, see Section 3.3.3, (𝜃/3, 𝜃/3) is the only Nash equilibrium, as best response relations
𝑞1 = (𝜃 − 𝑞2)/2 and 𝑞2 = (𝜃 − 𝑞1)/2 are both satisfied only by 𝑞1 = 𝑞2 = 𝜃/3.

3.5.1 Stag Hunt

Two (in some versions more than two) hunters, players 1 and 2, can each choose to hunt

• stag (𝑆) = a large tasty meal,
• hare (𝐻 ) = also tasty but small,

but hunting stag is much more demanding and the forces of both players need to be joined (hare can be
hunted individually). In a strategy-form game model, we have 𝑁 = {1, 2} , 𝑆1 = 𝑆2 = {𝑆, 𝐻 } and payoff of
form
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Table 3.13: Stag Hunt payoffs

𝑆 𝐻
𝑆 (5, 5) (0, 3)
𝐻 (3, 0) (3, 3)

Clearly, there are two Nash equilibria – (𝑆, 𝑆) and (𝐻 , 𝐻), where the former is strictly better for each
player than the latter! Which one is more reasonable?

If each player believes that the other one will go for a hare, then (𝐻 , 𝐻) is a reasonable outcome ⟹ a
society of individualists who do not cooperate at all. On the other hand, if each player believes that the
other will cooperate, then this anticipation is self-fulfilling and results in what can be called a cooperative
society.

Note

This is supposed to explain that in the real world, there are societies that have similar endowments,
access to technology and physical environment but have very different achievements, all because
of self-fulfilling beliefs (or norms of behavior).

Another point of view might be to notice that (𝐻 , 𝐻) is less risky. The minimum secured by playing 𝑆 is
0 as opposed to 3 by playing 𝐻 (We will get to this minimax principle later). So it seems to be rational to
expect (𝐻 , 𝐻)?

Theorem 3.2.

1. If 𝑠∗ is a strictly dominant strategy equilibrium, then it is the unique Nash equilibrium.
2. Each Nash equilibrium is rationalizable and survives IESDS.
3. If 𝑆 is finite, neither rationalizability nor IESDS creates new Nash equilibria.

Corollary 3.2. Assume that 𝑆 is finite. If rationalizability or IESDS results in a unique strategy profile, then
this profile is a Nash equilibrium.

3.5.2 Interpretations of Nash Equilibria

Althoughwe have seen the rigorous definition of a Nash equilibrium, it can bemore intuitively interpreted
in the following two ways.

When the goal is to give advice to all of the players in a game (i.e., to advise each player on what strategy
to choose), any advice that was not an equilibrium would have the unsettling property that there would
always be some player for whom the advice was bad, in the sense that, if all other players followed the
parts of the advice directed to them, it would be better for some player to do differently than he was
advised. If the advice is an equilibrium, however, this will not be the case, because the advice to each
player is the best response to the advice given to the other players.
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On the other hand, when the goal is prediction rather than prescription, a Nash equilibrium can also be
interpreted as a potential stable point of a dynamic adjustment process in which individuals adjust their
behavior to that of the other players in the game, searching for strategy choices that will give them better
results.
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4 Mixed Strategies in Strategic-Form Games

4.1 Mixed Strategies

As pointed out before, neither of the solution concepts discussed so far has to exist in pure strategies, e.g.
Example 4.1.

Example 4.1 (Rock-Paper-Scissors). Consider a game

𝑅 𝑃 𝑆
𝑅 (0, 0) (−1, 1) (1, −1)
𝑃 (1, −1) (0, 0) (−1, 1)
𝑆 (−1, 1) (1, −1) (0, 0)

There are no strictly dominant pure strategies and no strategy is strictly dominated (IESDS removes
nothing). Also, each strategy is a best response to some strategy of the opponent (rationalizability removes
nothing). Finally, there are no pure Nash equilibria, as no pure strategy profile allows each player to play
a best response to the strategy of the other player.

How to solve this? Let the players randomize their choice of pure strategies.

Definition 4.1. Let 𝐴 be a finite set. A probability distribution over 𝐴 is a function 𝜎 ∶ 𝐴 → [0, 1]
such that ∑𝑎∈𝐴 𝜎(𝑎) = 1
We denote by Δ(𝐴) the set of all probability distributions over 𝐴.

Note

Consider two strategies 𝐴1, 𝐴2, then their respective probabilities are 𝑝, 1 − 𝑝. For three strategies
𝐴1, 𝐴2, 𝐴3 they span a subspace of ℝ3 such that 1 = 𝜎(𝐴1) + 𝜎(𝐴2) + 𝜎(𝐴3) – this gives a part of the
plane (simplex).

Example 4.2. Consider 𝐴 = {𝑎, 𝑏, 𝑐} and a function 𝜎 ∶ 𝐴 → [0, 1] such that 𝜎(𝑎) = 1/4, 𝜎(𝑏) = 3/4 and
𝜎(𝑐) = 0. Then 𝜎 in Δ(𝐴).

Let us fix a strategic-form game 𝐺 = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ).
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Important

From now on, assume two players and both 𝑆𝑖 finite!

Definition 4.2 (Mixed Strategy). A mixed strategy of player 𝑖 is a probability distribution 𝜎 ∈ Δ(𝑆𝑖)
over 𝑆𝑖. We denote by Σ𝑖 = Δ(𝑆𝑖) the set of all mixed strategies of player 𝑖. We define Σ = Σ1 × Σ2, the set
of all mixed strategy profiles.

We identify each 𝑠𝑖 ∈ 𝑆𝑖 with a mixed strategy 𝜎 that assigns probability one to 𝑠𝑖 (and zero to other
pure strategies). Let 𝜎 = (𝜎1, 𝜎2) be a mixed strategy profile. Intuitively, we assume that each player
𝑖 randomly selects his pure strategy according to 𝜎𝑖 and independently of his opponents. Thus for
𝑠 = (𝑠1, 𝑠2) ∈ 𝑆 = 𝑆1 × 𝑆2 we have that

𝜎(𝑠) ∶= 𝜎1(𝑠1) ⋅ 𝜎2(𝑠2)
is the probability that the players randomly select the pure strategy profile 𝑠 according to the mixed
strategy profile 𝜎 .

Note

We abuse notation a bit here: 𝜎 denotes two things, a vector of mixed strategies as well as a proba-
bility distribution on 𝑆.

Example 4.3 (Rock-Paper-Scissors). Consider a game of Rock-Paper-Scissors given by

𝑅 𝑃 𝑆
𝑅 (0, 0) (−1, 1) (1, −1)
𝑃 (1, −1) (0, 0) (−1, 1)
𝑆 (−1, 1) (1, −1) (0, 0)

As an example of mixed strategy 𝜎1 consider

𝜎1(𝑅) = 1
2 , 𝜎1(𝑃) = 1

3 , 𝜎1(𝑆) = 1
6 ,

which we sometimes write as (12 (𝑅),
1
3 (𝑃),

1
6 (𝑆)), or only (12 ,

1
3 ,

1
6 ) if the order of pure strategies is fixed.

Now assume a mixed strategy profile 𝜎 = (𝜎1, 𝜎2) where

𝜎1 = (12(𝑅),
1
3(𝑃),

1
6(𝑆)) , 𝜎2 = (13(𝑅),

2
3(𝑃), 0(𝑆)) .

Then the probability 𝜎(𝑅, 𝑃) that the pure strategy profile (𝑅, 𝑃) will be played by players playing the
mixed profile (𝜎1, 𝜎2) is

𝜎1(𝑅) ⋅ 𝜎2(𝑃) = 1
2 ⋅ 23 = 1

3
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But now what is the suitable notion of payoff?

Definition 4.3 (Expected Payoff). The expected payoff of player 𝑖 under a mixed strategy profile 𝜎 ∈ Σ
is

𝑢𝑖(𝜎) ∶= ∑
𝑠∈𝑆

𝜎(𝑠)𝑢𝑖(𝑠) = ∑
𝑠1∈𝑆1

∑
𝑠2∈𝑆2

𝜎1(𝑠1)𝜎2(𝑠2)𝑢𝑖(𝑠1, 𝑠2),

i.e. it is the “weighted average” of what player 𝑖 wins under each pure strategy profile 𝑠, weighted by the
probability of that profile.

Proposition 4.1. Every rational player strives to maximize his own expected payoff.

Note

This assumption is not always completely convincing… Not everyone must be fond of lottery (and
still be rational).

Example 4.4 (Matching Pennies). Consider a game Matching Pennies given by

𝐻 𝑇
𝐻 (1, −1) (−1, 1)
𝑇 (−1, 1) (1, −1)

Each player secretly turns a penny into heads or tails, and then they reveal their choices simultaneously.
If the pennies match, player 1 (row) wins, if they do not match, player 2 (column) wins. Now, consider
𝜎1 = (1/3(𝐻), 2/3(𝑇 )) and 𝜎2 = (1/4(𝐻), 3/4(𝑇 )), then

𝑢1(𝜎) = ∑
(𝑋 ,𝑌 )∈{𝐻 ,𝑇 }2

𝜎1(𝑋)𝜎2(𝑌 )𝑢1(𝑋 , 𝑌 ) = ⋯ = 1
6

𝑢2(𝜎) = ∑
(𝑋 ,𝑌 )∈{𝐻 ,𝑇 }2

𝜎1(𝑋)𝜎2(𝑌 )𝑢2(𝑋 , 𝑌 ) = ⋯ = −1
6

4.2 Solution Concepts

We revisit the following solution concepts in mixed strategies:

• strictly dominant strategy equilibrium,
• IESDS equilibria,
• rationalizable equilibria,
• Nash equilibria;
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Important

From now on, when we say a strategy we implicitly mean a mixed strategy.

In order to deal with efficiency issues we assume that the size of the game 𝐺 is defined by |𝐺| ∶= |𝑁 | +
∑𝑖∈𝑁 |𝑆𝑖|+∑𝑖∈𝑁 |𝑢𝑖|where |𝑢𝑖| = ∑𝑠∈𝑆 |𝑢𝑖(𝑠)| and |𝑢𝑖(𝑠)| is the length of a binary encoding of 𝑢𝑖(𝑠) (we assume
that rational numbers are encoded as quotients of two binary integers). Note that, in particular, |𝐺| > |𝑆|.
This will be later needed for the complexity of certain algorithms in relation to game size.

Definition 4.4. Let 𝜎1, 𝜎 ′1 ∈ Σ1 be (mixed) strategies of player 1. Then 𝜎 ′1 is strictly dominated by 𝜎1
(write 𝜎 ′1 ≺ 𝜎1) if

𝑢1(𝜎1, 𝑠2) > 𝑢1(𝜎 ′1 , 𝑠2)
for all 𝑠2 ∈ 𝑆2. Symmetrically for player 2.

Note

The above condition is equivalent to

𝑢1(𝜎1, 𝜎2) > 𝑢1(𝜎 ′1 , 𝜎2)

for all 𝜎2 ∈ Σ2.

Example 4.5. Consider a game

Table 4.4: Payoffs for one player

𝑋 𝑌
𝐴 3 0
𝐵 0 3
𝐶 1 1

Is there a strictly dominated strategy? Here 𝜎 = (1/2, 1/2, 0) dominates (0, 0, 1), aka the pure 𝐶 , strategy.
Then expected payoffs for strategies of this game can be plotted as seen in Figure 4.1.
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½A + ½B

qA + (1-q)B

3

1.5

X Y

A B

C

Figure 4.1: Example of a game with a pure strategy strictly dominated by a mixed strategy

Question: Is there a game with at least one strictly dominated strategy but without strictly dominated
pure strategies? Yes, consider the following game, where 𝐶 strictly dominates the mixed strategy
(1/2, 1/2, 0):

½A + ½B

3

1.5

X Y

A B

C

Definition 4.5. A mixed strategy 𝜎𝑖 ∈ Σ𝑖 is strictly dominant if every other mixed strategy of player 𝑖 is
strictly dominated by 𝜎𝑖.

Definition 4.6. A strategy profile 𝜎 ∈ Σ is a strictly dominant strategy equilibrium if 𝜎𝑖 ∈ Σ𝑖 is strictly
dominant for all 𝑖 ∈ 𝑁 .

Proposition 4.2. If the strictly dominant strategy equilibrium exists, it is unique, all its strategies are pure,
and rational players will play it.
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Proof. Let 𝜎∗ = (𝜎∗1 , 𝜎∗2 ) ∈ Σ be a strictly dominant strategy equilibrium. First, without loss of generality,
let us assume that for player 1 there exists a non-empty non-singular subset of his pure strategies 𝑆′1 ⊆ 𝑆1
such that 𝜎∗1 (𝑠1,𝑗) > 0 for all 𝑗 ∈ {1, … , |𝑆′1|}with 𝑠1,𝑗 ∈ 𝑆′1, i.e. |supp (𝜎∗1 ) | = |𝑆′1| > 1. Then per Definition 4.3,
we get

𝑢1(𝜎∗1 , 𝜎∗2 ) = ∑
𝑠1,𝑗∈𝑆′1

∑
𝑠2∈𝑆2

𝜎∗1 (𝑠1,𝑗)𝜎∗2 (𝑠2)𝑢1(𝑠1,𝑗 , 𝑠2)

= ∑
𝑠1,𝑗∈𝑆′1

𝜎∗1 (𝑠1,𝑗) ∑
𝑠2∈𝑆2

𝜎∗2 (𝑠2)𝑢1(𝑠1,𝑗 , 𝑠2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈1(𝑠1,𝑗 ;𝜎∗2 )
= ∑

𝑠1,𝑗∈𝑆′1
𝜎∗1 (𝑠1,𝑗)𝑈1(𝑠1,𝑗 ; 𝜎∗2 )

Because 𝜎∗ is a strictly dominant strategy equilibrium, then per Definition 4.6, it must hold that
𝑈1(𝑠1,𝑗 ; 𝜎∗2 ) ≠ 𝑈1(𝑠1,𝑘 ; 𝜎∗2 ) for 𝑗 ≠ 𝑘, otherwise one could arbitrarily distribute probabilities of 𝜎∗1 between
𝑠1,𝑗 and 𝑠1,𝑘 without changing the payoff for player 1, which is a contradiction. Hence there exists
𝐽 ∈ {1, … , |𝑆′1|} such 𝑈1(𝑠1,𝐽 ; 𝜎∗2 ) > 𝑈1(𝑠1,𝑗 ; 𝜎∗2 ) for every 𝑗 ∈ {1, … , |𝑆′1|} with 𝑗 ≠ 𝐽 . But then by choosing
𝜎 ′1(𝑠1,𝐽 ) = 1 and 𝜎 ′1(𝑠1) = 0 for every 𝑠1 ∈ 𝑆1 such that 𝑠1 ≠ 𝑠1,𝐽 (i.e. playing the pure strategy 𝑠1,𝐽 ), we get

𝑢1(𝜎 ′1 , 𝜎∗2 ) = 𝑈1(𝑠1,𝐽 ; 𝜎∗2 ) > ∑
𝑠1,𝑗∈𝑆′1

𝜎∗1 (𝑠1,𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=1

<𝑈1(𝑠1,𝐽 ;𝜎∗2 )
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑈1(𝑠1,𝑗 ; 𝜎∗2 ) = 𝑢1(𝜎∗1 , 𝜎∗2 ),

which is a contradiction with the fact that 𝜎∗ is a strictly dominant strategy equilibrium. Thus any strictly
dominant strategy equilibrium is comprised of only pure strategies. Then by Corollary 3.1, we obtain that
𝜎∗ is unique and that rational players will play it, which concludes the proof.

Thus, to compute the strictly dominant strategy equilibrium, it is sufficient to consider only pure strate-
gies.

Definition 4.7 (IESDS in Mixed Strategies). Define a sequence 𝐷0𝑖 , 𝐷1𝑖 , 𝐷2𝑖 , … of strategy sets of player 𝑖.
Also denote by 𝐺𝑘𝐷𝑆 the game obtained from 𝐺 by restricting to 𝐷𝑘𝑖 , 𝑖 ∈ 𝑁 . We shall call the following
algorithm “Iterated Elimination of Strictly Dominated Strategies” :

1. Initialize 𝑘 = 0 and 𝐷0𝑖 = 𝑆𝑖 for each 𝑖 ∈ 𝑁 .
2. For all players 𝑖 ∈ 𝑁 : Let 𝐷𝑘+1𝑖 be the set of all pure strategies of 𝐷𝑘𝑖 that are not strictly dominated

in 𝐺𝑘𝐷𝑆 by mixed strategies.
3. If 𝐷𝑘+1𝑖 = 𝐷𝑘𝑖 for all players 𝑖 ∈ 𝑁 , then stop. Otherwise, let 𝑘 ∶= 𝑘 + 1 and go to 2.

We say that 𝑠𝑖 ∈ 𝑆𝑖 survives IESDS if 𝑠𝑖 ∈ 𝐷𝑘𝑖 for all 𝑘 = 0, 1, 2, … (or until stop).

Definition 4.8. A strategy profile 𝑠 = (𝑠1, 𝑠2) ∈ 𝑆 is an IESDS equilibrium if both 𝑠1 and 𝑠2 survive
IESDS.
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Each 𝐷𝑘+1𝑖 can be computed in polynomial time using linear programming.

Example 4.6. Consider a game

𝑋 𝑌
𝐴 3 0
𝐵 0 3
𝐶 1 1

Let us have a look at the first iteration of IESDS. Observe that 𝐴, 𝐵 are not strictly dominated by any
mixed strategy. Let us construct a set of constraints on mixed strategies (possibly) strictly dominating 𝐶 :

3𝑥𝐴 + 0𝑥𝐵 + 𝑥𝐶 > 1
0𝑥𝐴 + 3𝑥𝐵 + 𝑥𝐶 > 1

𝑥𝐴, 𝑥𝐵, 𝑥𝐶 ≥ 0
𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 = 1

4.3 Linear Programming

Linear programming is a technique for the optimization of a linear objective function, subject to lin-
ear (non-strict) inequality constraints. Formally, a linear program in so-called canonical form looks like
this:

max
𝑚
∑
𝑗=1

𝑐𝑗𝑥𝑗

s.t.
𝑚
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 1 ≤ 𝑖 ≤ 𝑛

𝑥𝑗 ≥ 0 1 ≤ 𝑗 ≤ 𝑚

Here 𝑎𝑖𝑗 , 𝑏𝑘 and 𝑐𝑗 are real numbers and 𝑥𝑗 ’s are real variables. A feasible solution is an assignment of
real numbers to the variables 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑚, so that the constraints are satisfied. An optimal solution
is a feasible solution that maximizes the objective function ∑𝑚

𝑗=1 𝑐𝑗𝑥𝑗 . We assume that coefficients 𝑎𝑖𝑗 , 𝑏𝑘
and 𝑐𝑗 are encoded in binary (more precisely, as fractions of two integers encoded in binary).

Theorem 4.1 (Khachiyan, Doklady Akademii Nauk SSSR, 1979). There is an algorithm that for any linear
program computes an optimal solution in polynomial time.
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The algorithm uses the so-called ellipsoid method. In practice, the Khachiyan’s is not used. Usually
simplex algorithm is used even though its theoretical complexity is exponential. There is also a polyno-
mial time algorithm (by Karmarkar) which has better complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex. There exist several advanced linear programming solvers
(usually parts of larger optimization packages) implementing various heuristics for solving large-scale
problems, sensitivity analysis, etc.

Example 4.7 (continued Example 4.6). The linear program for deciding whether 𝐶 is strictly dominated:
The program maximizes 𝑦 under the following constraints:

3𝑥𝐴 + 0𝑥𝐵 + 𝑥𝐶 ≥ 1 + 𝑦
0𝑥𝐴 + 3𝑥𝐵 + 𝑥𝐶 ≥ 1 + 𝑦

𝑥𝐴, 𝑥𝐵, 𝑥𝐶 ≥ 0
𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 = 1

𝑦 ≥ 0

Here 𝑦 just implements the strict inequality using ≥, we look for a solution with 𝑦 > 0. The maximum
𝑦 = 1

2 is attained at 𝑥𝐴 = 1
2 and 𝑥𝐵 = 1

2 . Note that in step 2 of Definition 4.7, it is not sufficient to consider
domination by only pure strategies. Consider the following zero-sum game

Table 4.6: Zero-sum game

𝑋 𝑌
𝐴 3 0
𝐵 0 3
𝐶 1 1

Here 𝐶 is strictly dominated by (𝜎1(𝐴), 𝜎1(𝐵), 𝜎1(𝐶)) = (12 ,
1
2 , 0), but no strategy is strictly dominated in

pure strategies.

4.4 Best Response in Mixed Strategies

Definition 4.9. A (mixed) belief of player 1 is a mixed strategy 𝜎2 of player 2 (and vice versa).

Definition 4.10. A mixed strategy 𝜎1 ∈ Σ1 is a best response to a belief 𝜎2 ∈ Σ2 if

𝑢1(𝜎1, 𝜎2) ≥ 𝑢1(𝑠1, 𝜎2)

for all 𝑠1 ∈ 𝑆1. Denote by BR1 (𝜎2) the set of all best responses of player 1. Symmetrically for player 2.
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Note

The above condition is equivalent to

𝑢1(𝜎1, 𝜎2) ≥ 𝑢1(𝜎 ′1 , 𝜎2)

for all 𝜎 ′1 ∈ Σ1.

Example 4.8. Consider a game with the following payoffs for player 1:

Table 4.7: Payoffs for player 1

𝑋 𝑌
𝐴 2 0
𝐵 0 2
𝐶 1 1

• Player 1 (row) plays 𝜎1 = (𝑎(𝐴), 𝑏(𝐵), 𝑐(𝐶)).
• Player 2 (column) plays (𝑞(𝑋), (1 − 𝑞)(𝑌 )) (we write just 𝑞).

Because
𝑢1(𝐴, 𝑞) = 2𝑞

𝑢1(𝐵, 𝑞) = 2(1 − 𝑞)
𝑢1(𝐶, 𝑞) = 1

then

BR1 (𝑞) =
⎧
⎨
⎩

𝐴, 𝑞 > 1
2 ,

𝐵, 𝑞 < 1
2 ,

⟨(𝐴, 𝐵, 𝐶), 𝑐⟩ , ∑ 𝑐 = 1, 𝑞 = 1
2 .

For 𝜎1 such that 𝜎1(𝐴), 𝜎1(𝐵) > 0 and

𝑢1(𝐴, 𝑞) < 𝑢1(𝐵, 𝑞),
then ̄𝜎1 such that

̄𝜎1(𝐴) = 0,
̄𝜎1(𝐵) = 𝜎1(𝐴) + 𝜎1(𝐵)

is a better response.

4.5 Rationalizability in Mixed Strategies (Two Players)

We will begin with an assumption: A rational player 1 with a belief 𝜎2 always plays a best response to 𝜎2
(the same for player 2).
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Definition 4.11. A pure strategy 𝑠1 ∈ 𝑆1 of player 1 is never best response if it is not a best response to
any belief 𝜎2 (similarly for player 2).

No rational player plays a strategy that is never best response.

Definition 4.12 (Rationalizable). Define a sequence 𝑅0𝑖 , 𝑅1𝑖 , … of strategy sets of player 𝑖. Also, denote by
𝐺𝑘𝑅𝑎𝑡 the game obtained from 𝐺 by restricting to 𝑅𝑘𝑖 for 𝑖 ∈ 𝑁 . Consider the following algorithm

1. Initialize 𝑘 = 0 and 𝑅0𝑖 = 𝑆𝑖 for each 𝑖 ∈ 𝑁 .
2. For all players 𝑖 ∈ 𝑁 : Let 𝑅𝑘+1𝑖 be the set of all strategies of 𝑅𝑘𝑖 that are best responses to some

(mixed) beliefs in 𝐺𝑘𝑅𝑎𝑡 .
3. Let 𝑘 ∶= 𝑘 + 1 and go to 2.

We say that 𝑠𝑖 ∈ 𝑆𝑖 is rationalizable if 𝑠𝑖 ∈ 𝑅𝑘𝑖 for all 𝑘 = 0, 1, 2, … (or until stop).

Definition 4.13. A strategy profile 𝑠 = (𝑠1, 𝑠2) ∈ 𝑆 is a rationalizable equilibrium if both 𝑠1 and 𝑠2 are
rationalizable.

Example 4.9. Consider again a game 𝐺 given by

𝑋 𝑌
𝐴 3 0
𝐵 0 3
𝐶 1 1

What pure strategies of player 1 are strictly dominated? In pure strategies, 𝐶 is not strictly dominated, but
it is never best response. In mixed strategies, the strategy (12 (𝐴),

1
2 (𝐵), 0(𝐶)) strictly dominates 𝐶 . What

pure strategies of player 1 are never best responses? We can make the following observation: The set of
strictly dominated pure strategies coincides with the set of pure never best responses! … and this holds
in general for two-player games:

Theorem 4.2. A pure strategy 𝑠1 of player 1 is never best response to any belief 𝜎2 if and only if 𝑠1 is strictly
dominated by a strategy 𝜎1 ∈ Σ1 (similarly for player 2).

Corollary 4.1. It follows that a strategy of 𝑆𝑖 survives IESDS ⟺ it is rationalizable.

As opposed to pure strategies, the IESDS and rationalizability coincide in mixed strategies.
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4.6 Mixed Nash Equilibria

Definition 4.14. A mixed-strategy profile 𝜎∗ = (𝜎∗1 , 𝜎∗2 ) ∈ Σ is a (mixed) Nash equilibrium if 𝜎∗1 is a
best response to 𝜎∗2 and 𝜎∗2 is a best response to 𝜎∗1 . That is

𝑢1(𝜎∗1 , 𝜎∗2 ) ≥ 𝑢1(𝑠1, 𝜎∗2 ) ∀𝑠1 ∈ 𝑆1,
𝑢2(𝜎∗1 , 𝜎∗2 ) ≥ 𝑢2(𝜎∗1 , 𝑠2) ∀𝑠2 ∈ 𝑆2.

Theorem 4.3 (Nash). Every finite game in strategic form has a Nash equilibrium.

Example 4.10. Consider a game given by

𝐻 𝑇
𝐻 (1, −1) (−1, 1)
𝑇 (−1, 1) (1, −1)

Player 1 (row) plays (𝑝(𝐻), (1 − 𝑝)(𝑇 )) (we write just 𝑝) and player 2 (column) plays (𝑞(𝐻), (1 − 𝑞)(𝑇 ))
(we write 𝑞). Compute all Nash equilibria. What are the expected payoffs of playing pure strategies for
player 1? From

𝑢1(𝐻 , 𝑞) = 2𝑞 − 1 ∧ 𝑢1(𝑇 , 𝑞) = 1 − 2𝑞,
we get

𝑢1(𝑝, 𝑞) = 𝑝𝑢1(𝐻 , 𝑞) + (1 − 𝑝)𝑢1(𝑇 , 𝑞) = 𝑝(2𝑞 − 1) + (1 − 𝑝)(1 − 2𝑞).

We can obtain the best response correspondence BR1 (𝑞)

BR1 (𝑞) =
⎧
⎨
⎩

𝑇 , 𝑞 < 1
2 ,

𝑝 ∈ [0, 1], 𝑞 = 1
2 ,

𝐻 , 𝑞 > 1
2

and we can repeat the same process for player 2. The only situation where they both play their best
response to each other – the intersection of BR1 (𝑞) and BR2 (𝑝) – is the only Nash equilibrium 𝜎 =
(𝜎1, 𝜎2) = (12 ,

1
2 ).

4.6.1 Properties of Mixed Nash Equilibria

Lemma 4.1. Every Nash equilibrium 𝜎∗ = (𝜎∗1 , 𝜎∗2 ) ∈ Σ satisfies

• 𝑢1(𝑠1, 𝜎∗2 ) = 𝑢1(𝜎∗) for 𝑠1 ∈ supp (𝜎∗1 );
• 𝑢2(𝜎∗1 , 𝑠2) = 𝑢1(𝜎∗) for 𝑠2 ∈ supp (𝜎∗2 ).
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Proof. Let’s now prove Lemma 4.1. Without loss of generality, consider only player 1 and assume that
𝜎∗ is a Nash equilibrium. The latter assumption implies 𝑢1(𝑠1, 𝜎∗2 ) ≤ 𝑢1(𝜎∗) for all 𝑠1 ∈ 𝑆1. Now, if there
exists 𝑠′1 ∈ supp (𝜎∗1 ) ⊆ 𝑆1 satisfying 𝑢1(𝑠′1, 𝜎∗2 ) < 𝑢1(𝜎∗), then because 𝜎∗(𝑠′1) > 0 we have

𝑢1(𝜎∗) = ∑
𝑠1∈𝑆1

𝜎∗1 (𝑠1)𝑢1(𝑠1, 𝜎∗2 )

= 𝜎∗1 (𝑠′1) 𝑢1(𝑠′1, 𝜎∗2 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<𝑢1(𝜎∗)

+ ∑
𝑠1∈𝑆1⧵{𝑠′1}

𝜎∗1 (𝑠1) 𝑢1(𝑠1, 𝜎∗1 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤𝑢1(𝜎∗)

< 𝜎∗1 (𝑠′1)𝑢1(𝜎∗) + ∑
𝑠1∈𝑆1⧵{𝑠′1}

𝜎∗1 (𝑠1)𝑢1(𝜎∗)

= ∑
𝑠1∈𝑆1

𝜎∗1 (𝑠1)𝑢1(𝜎∗) = 𝑢1(𝜎∗),

which is a contradiction. Note that we could only sum over the supp (𝜎∗1 ) ⊆ 𝑆1. Thus 𝑢1(𝑠1, 𝜎∗2 ) = 𝑢1(𝜎∗)
for all 𝑠1 ∈ 𝑆1.

Note

Intuitively, not playing simply a pure strategy can give you a better utility. But if it were to give
you less, it would drag the whole averaged utility of the equilibrium down, which would be a con-
tradiction with the initial utility value of the equilibrium.

Example 4.11. Consider again a game given by

𝐻 𝑇
𝐻 (1, −1) (−1, 1)
𝑇 (−1, 1) (1, −1)

Player 1 (row) plays (𝑝(𝐻), (1−𝑝)(𝑇 )) (we write just 𝑝) and player 2 (column) plays (𝑞(𝐻), (1−𝑞)(𝑇 )) (we
write 𝑞). Compute all Nash equilibria.

Firstly, there are no pure strategy equilibria. Also, there are no equilibria where only player 1 random-
izes (in other words, e.g. |supp (𝜎∗1 ) | = 1 and |supp (𝜎∗2 ) | = 2): Indeed, assume that (𝑝, 𝐻) is such an
equilibrium. Then by Lemma 4.1

1 = 𝑢1(𝐻 , 𝐻) = 𝑢1(𝑇 , 𝐻) = −1
is a contradiction. Also, (𝑝, 𝑇 ) cannot be an equilibrium. Assume now both players randomize, so 𝑝, 𝑞 ∈
(0, 1). The expected payoffs of playing pure strategies for player 1:

𝑢1(𝐻 , 𝑞) = 2𝑞 − 1 ∧ 𝑢1(𝑇 , 𝑞) = 1 − 2𝑞
and similarly

𝑢2(𝑝, 𝐻) = 1 − 2𝑝 ∧ 𝑢2(𝑝, 𝑇 ) = 2𝑝 − 1.
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Again, by Lemma 4.1, such Nash equilibria must satisfy

2𝑞 − 1 = 1 − 2𝑞 ∧ 2𝑝 − 1 = 1 − 2𝑝,
which are linear equations and from them we get 𝑝 = 𝑞 = 1

2 – the only Nash equilibrium.

Note

In other words, we try to remove the element of randomness as much as we can by considering
Lemma 4.1 and pure strategies.

Example 4.12. Consider the Battle of Sexes game given by the following table:

𝑂 𝐹
𝑂 (2, 1) (0, 0)
𝐹 (0, 0) (1, 2)

Clearly, there are two pure strategy equilibria (𝑂, 𝑂) and (𝐹 , 𝐹 ), and no Nash equilibrium where only one
player randomizes. Now assume that

• player 1 (row) plays (𝑝(𝑂), (1 − 𝑝)𝐹) (we write just 𝑝) and
• player 2 (column) plays (𝑞(𝑂), (1 − 𝑞)𝐹) (we write just 𝑞),

where 𝑝, 𝑞 ∈ (0, 1). By Lemma 4.1, such Nash equilibria must satisfy

2𝑞 = 1 − 𝑞 ∧ 𝑝 = 2(1 − 𝑝),
which holds only for 𝑞 = 1

3 and 𝑝 = 2
3 .

What did we do in these examples (see Example 4.11 and Example 4.12)? We went through all support
combinations for both players.

(pure, one player mixing, both mixing)

For each pair of support sets we tried to find equilibria in strategies with these supports.

(in Battle of Sexes: two pure, no equilibrium with just one player mixing, one equilibrium
when both mixing)

Whenever one of the supports was non-singleton, we reduced the computation of Nash equilibria to linear
equations.

Lemma 4.2. Let 𝜎∗ = (𝜎∗1 , 𝜎∗2 ) ∈ Σ be a mixed profile. Assume there exists 𝑤1, 𝑤2 ∈ ℝ such that

• 𝑢1(𝑠1, 𝜎∗2 ) = 𝑤1 for 𝑠1 ∈ supp (𝜎∗1 ),
• 𝑢1(𝑠1, 𝜎∗2 ) ≤ 𝑤1 for 𝑠1 ∉ supp (𝜎∗1 ),
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• 𝑢2(𝜎∗2 , 𝑠2) = 𝑤2 for 𝑠2 ∈ supp (𝜎∗2 ),
• 𝑢2(𝜎∗2 , 𝑠2) ≤ 𝑤2 for 𝑠2 ∉ supp (𝜎∗2 ).

Then 𝑢1(𝜎∗) = 𝑤1 and 𝑢2(𝜎∗) = 𝑤2, and 𝜎∗ is a Nash equilibrium.

Proof. Consider just the player 1 (for player 2 similarly):

𝑢1(𝜎∗) = ∑
𝑠1∈𝑆1

𝜎∗1 (𝑠1)𝑢1(𝑠1, 𝜎∗2 )

= ∑
𝑠1∈supp(𝜎∗1 )

𝜎∗1 (𝑠1)𝑢1(𝑠1, 𝜎∗2 )

= ∑
𝑠1∈supp(𝜎∗1 )

𝜎∗1 (𝑠1)𝑤1

= 𝑤1 ∑
𝑠1∈supp(𝜎∗1 )

𝜎∗1 (𝑠1) = 𝑤1.

Now the fact that 𝜎∗ is a Nash equilibrium follows from the definition.

4.7 Computing Nash Equilibria

Every Nash equilibrium 𝜎∗ can be computed by finding appropriate 𝑤1, 𝑤2 so that

• 𝑢1(𝑠1, 𝜎∗2 ) = 𝑤1 for 𝑠1 ∈ supp (𝜎∗1 ),
• 𝑢1(𝑠1, 𝜎∗2 ) ≤ 𝑤1 for 𝑠1 ∉ supp (𝜎∗1 ),
• 𝑢2(𝜎∗2 , 𝑠2) = 𝑤2 for 𝑠2 ∈ supp (𝜎∗2 ),
• 𝑢2(𝜎∗2 , 𝑠2) ≤ 𝑤2 for 𝑠2 ∉ supp (𝜎∗2 ).

Indeed,

• by Lemma 4.2, all 𝜎∗ and 𝑤1, 𝑤2 satisfying the above inequalities give a Nash equilibrium 𝜎∗ with
𝑢1(𝜎∗) = 𝑤1 and 𝑢2(𝜎∗) = 𝑤2,

• by Lemma 4.1, for every Nash equilibrium 𝜎∗ choosing 𝑤1 = 𝑢1(𝜎∗) and 𝑤2 = 𝑢2(𝜎∗) satisfies the
above inequalities.

Suppose that we somehow know the supports supp (𝜎∗1 ) , supp (𝜎∗2 ) for some Nash equilibrium 𝜎∗ =
(𝜎∗1 , 𝜎∗2 ) (which itself is unknown to us). We may consider all 𝜎∗𝑖 (𝑠𝑖)’s and both 𝑤1, 𝑤2’s as variables and
use the above conditions to design a system of inequalities capturing Nash equilibria with the given
support sets supp (𝜎∗1 ) , supp (𝜎∗2 ).
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4.7.1 Support Enumeration

Definition 4.15 (Nash equilibrium given the support sets). To simplify notation, assume that for 𝑖 we
have 𝑆𝑖 = {1, … , 𝑚𝑖}. Then 𝜎𝑖(𝑗) is the probability of the pure strategy 𝑗 in the mixed strategy 𝜎𝑖. Now fix
supports supp𝑖 ⊆ 𝑆𝑖 for every 𝑖 ∈ {1, 2} and consider the following system of constraints with variables
𝜎1(1), … , 𝜎1(𝑚1), 𝜎2(1), … , 𝜎2(𝑚2), 𝑤1, 𝑤2:

1. For all 𝑘 ∈ supp1 and 𝑙 ∈ supp2:

𝑢1(𝑘, 𝜎2) = ∑
𝑙′∈𝑆2

𝜎2(𝑙′)𝑢1(𝑘, 𝑙′) = 𝑤1, ∑
𝑘′∈𝑆1

𝜎1(𝑘′)𝑢2(𝑘′, 𝑙) = 𝑤2.

2. For all 𝑘 ∉ supp1 and 𝑙 ∉ supp2:

∑
𝑙′∈𝑆2

𝜎2(𝑙′)𝑢1(𝑘, 𝑙′) ≤ 𝑤1, ∑
𝑘′∈𝑆1

𝜎1(𝑘′)𝑢2(𝑘′, 𝑙) ≤ 𝑤2.

3. For all 𝑖 ∈ {1, 2}: 𝜎𝑖(1) + ⋯ + 𝜎𝑖(𝑚𝑖) = 1.
4. For all 𝑖 ∈ {1, 2} and all 𝑘 ∈ supp𝑖: 𝜎𝑖(𝑘) ≥ 0.

Strict inequality

Technically, there should be a strict inequality, but then it wouldn’t be a linear program anymore.
What’s more, it can be shown that this relaxation gives us the same solutions.

5. For all 𝑖 ∈ {1, 2} and all 𝑘 ∉ supp𝑖: 𝜎𝑖(𝑘) = 0.

Therefore we can see that the constraints are linear for the two players. So the question now is how to
find the supp1 and supp2… And we can simply guess!

Definition 4.16 (Algorithm for finding a Nash equilibrium). Consider a two-player strategic game 𝐺
with strategy sets 𝑆1 = {1, … , 𝑚1} and 𝑆2 = {1, … , 𝑚2} and rational payoffs 𝑢1, 𝑢2 as an input. The output
of this algorithm is a Nash equilibrium 𝜎∗.
For all possible supp1 ⊆ 𝑆1 and supp2 ⊆ 𝑆2:

• Check if the corresponding system of linear constraints from Definition 4.15 has a feasible solution
𝜎∗, 𝑤∗1 , 𝑤∗2

• If so, STOP: the feasible solution 𝜎∗ is a Nash equilibrium satisfying 𝑢𝑖(𝜎∗) = 𝑤∗𝑖

Unfortunately, there are 2(𝑚1+𝑚2) possible subsets supp1, supp2 and as such, this algorithm requires worst-
case exponential time. What’s more, we can formulate the following remarks:

• The algorithm in Definition 4.16 combined with Theorem 4.3 and properties of linear programming
imply that every finite two-player game has a rational Nash equilibrium (furthermore, the rational
numbers have polynomial representation in binary).
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• The algorithm can be used to compute all Nash equilibria.

There are algorithms for computing (a finite representation of) a set of all feasible
solutions of a given linear constraint system.

• The algorithm can be used to compute “good” equilibria.

For example, to find a Nash equilibrium maximizing the sum of all expected payoffs (the “social
welfare”) it suffices to solve the system of constraints while maximizing 𝑤1 + 𝑤2. More precisely,
the algorithm can be modified as follows:

– Initialize 𝑊 ∶= −∞ (𝑊 stores the current maximum welfare)
– For all possible supp1 ⊆ 𝑆1 and supp2 ⊆ 𝑆2:

∗ Find the maximum value max(𝑤1+𝑤2) of 𝑤1+𝑤2 so that constraints are satisfiable (using
linear programming)

∗ Put 𝑊 ∶= max {𝑊 ,max(𝑤1 + 𝑤2)}
– Return 𝑊 .

4.8 Complexity results

Theorem 4.4. Given a two-player game in strategic form, a mixed Nash equilibrium can be computed in
exponential time.

Theorem 4.5. All the following problems are NP-complete: Given a two-player game in strategic form, does
it have:

1. a Nash equilibrium in which player 1 has utility at least a given amount 𝑣?
2. a Nash equilibrium in which the sum of expected payoffs of the two players is at least a given amount

𝑣?
3. a Nash equilibrium with a support of size greater than a given number?
4. a Nash equilibrium whose support contains a given strategy 𝑠?
5. a Nash equilibrium whose support does not contain a given strategy 𝑠?
6. …

What’s more, NP-hardness can be proved using reduction from SAT, see Figure 4.2.
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Figure 4.2: The reduction

But the real question is what is the exact complexity of computing Nash equilibria in two-player
games?

Let us concentrate on the problem of computing one Nash equilibrium (sometimes called the sample equi-
librium problem). As the class NP consists of decision problems, it cannot be directly used to characterize
the complexity of the sample equilibrium problem. We use complexity classes of function problems such as
FP, FNP, etc. The sample equilibrium problem belongs to the complexity class PPAD (which is a subclass
of TFNP) for two-player games.

Note

A binary relation 𝑃(𝑥, 𝑦) is in TFNP if and only if there is a deterministic polynomial time algorithm
that can determine whether 𝑃(𝑥, 𝑦) holds given both 𝑥 and 𝑦 , and for every 𝑥 , there exists a 𝑦 which
is at most polynomially longer than 𝑥 such that 𝑃(𝑥, 𝑦) holds.

Note

NP complexity class can be embedded into FNP by considering characteristic functions of the lan-
guages.

Can we do better than FNP (i.e. exponential time)? In what follows we show that the sample equilibrium
problem can be solved in polynomial time for zero-sum two-player games.
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4.8.1 Zero-sum Games

Definition 4.17. A mixed strategy 𝜎∗1 ∈ Σ1 is a maxmin strategy of player 1 if

𝜎∗1 ∈ argmax
𝜎1∈Σ1

min𝑠2∈𝑆2
𝑢1(𝜎1, 𝑠2), (4.1)

where 𝑠2 ∈ 𝑆2 can be swapped for 𝜎2 ∈ Σ2 (and there can be more than one maxmin strategy).

Note

Intuitively, a maxmin strategy 𝜎∗1 maximizes player 1’s worst-case payoff in the situation where
player 2 strives to cause the greatest harm to player 1 and knows what strategy player 1 will play.

Similarly, 𝜎∗2 ∈ Σ2 is a maxmin strategy of player 2 if

𝜎∗2 ∈ argmax
𝜎2∈Σ2

min𝑠1∈𝑆1
𝑢2(𝑠1, 𝜎2).

Assuming a zero-sum game, i.e. 𝑢1 = −𝑢2, this becomes

𝜎∗2 ∈ argmin
𝜎2∈Σ2

max𝑠1∈𝑆1
𝑢1(𝑠1, 𝜎2), (4.2)

where again 𝑠1 ∈ 𝑆1 can be swapped for 𝜎1 ∈ Σ1. Note the same payoff function for both players in (4.1)
and (4.2)

Theorem 4.6 (von Neumann). Assume a two-player zero-sum game. Then

max𝜎1∈Σ1
min𝑠2∈𝑆2

𝑢1(𝜎1, 𝑠2) = min𝜎2∈Σ2
max𝑠1∈𝑆1

𝑢1(𝑠1, 𝜎2).

Moreover, 𝜎∗ = (𝜎∗1 , 𝜎∗2 ) ∈ Σ is a Nash equilibrium iff both 𝜎∗1 and 𝜎∗2 are maxmin.

Tip

The maxmin equality in Theorem 4.6 can be equivalently expressed as

max𝜎1∈Σ1
min𝑠2∈𝑆2

𝑢1(𝜎1, 𝑠2) = − max𝜎2∈Σ2
min𝑠1∈𝑆1

𝑢2(𝑠1, 𝜎2).

So to compute a Nash equilibrium it suffices to compute (arbitrary) maxmin strategies for both players.
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4.8.2 Computing Nash Equilibria in Two-player Zero-sum Games

Assume 𝑆1 = {1, … , 𝑚1} , 𝑆2 = {1, … , 𝑚2}. We want to compute

𝜎∗1 ∈ argmax
𝜎1∈Σ1

min𝑙∈𝑆2
𝑢1(𝜎1, 𝑙).

Consider a linear program with variables 𝜎1(1), … , 𝜎1(𝑚1), 𝑣 :
max 𝑣

s.t.
𝑚1
∑
𝑘=1

𝜎1(𝑘)𝑢1(𝑘, 𝑙) ≥ 𝑣, 𝑙 = 1, … , 𝑚2,

𝑚1
∑
𝑘=1

𝜎1(𝑘) = 1,

𝜎1(𝑘) ≥ 0, 𝑘 = 1… , 𝑚1.

(4.3)

Lemma 4.3. For a mixed strategy 𝜎∗1 it holds that 𝜎∗1 ∈ argmax𝜎1∈Σ1 min𝑙∈𝑆2 𝑢1(𝜎1, 𝑙) if and only if assigning
𝜎1(𝑘) ∶= 𝜎∗1 (𝑘) and 𝑣 ∶= min𝑙∈𝑆2 𝑢1(𝜎∗1 , 𝑙) gives an optimal solution of the linear program (4.3).

4.9 Summary and Results

As a summary:

• We have reduced the computation of Nash equilibria to the computation of maxmin strategies for
both players;

• Maxmin strategies can be computed using linear programming in polynomial time;
• That is, Nash equilibria in zero-sum two-player games can be computed in polynomial time.

We have considered static games of complete information, i.e., “one-shot” games where the players know
exactly what game they are playing. We modeled such games using strategic-form games. We have
considered both pure strategy setting and mixed strategy setting. In both cases, we considered four
solution concepts:

• Strictly dominant strategies;
• Iterative elimination of strictly dominated strategies;
• Rationalizability (i.e., iterative elimination of strategies that are never best responses);
• Nash equilibria.

In pure strategy setting:

1. Strictly dominant strategy equilibrium survives IESDS, rationalizability and is the unique Nash
equilibrium (if it exists);

2. In finite games, rationalizable equilibria survive IESDS, and IESDS preserves the set of Nash equi-
libria;
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3. In finite games, rationalizability preserves Nash equilibria.

In mixed setting on the other hand:

1. In finite two-player games, IESDS and rationalizability coincide;
2. Strictly dominant strategy equilibrium survives IESDS (rationalizability) and is the unique Nash

equilibrium (if it exists);
3. In finite games, IESDS (rationalizability) preserves Nash equilibria.

Tip

The proofs for 2. and 3. in the mixed setting are similar to the corresponding proofs in the pure
setting.

Again, using the expected value as we did gives us weird results like IESDS and rationalizability being the
same. Strictly dominant strategy equilibria coincide in pure and mixed settings and can be computed in
polynomial time. IESDS and rationalizability can be implemented in polynomial time in the pure setting
as well as in the mixed setting. In the mixed setting, linear programming is needed to implement one step
of IESDS (rationalizability). Nash equilibria can be computed for two-player games

• in polynomial time for zero-sum games (using von Neumann’s Theorem 4.6 and linear program-
ming);

• in exponential time using support enumeration;
• in PPAD using Lemke-Howson (omitted).

4.10 Modes of domination

To simplify, let us consider only pure strategies. Recall that for 𝑠𝑖, 𝑠′𝑖 ∈ 𝑆𝑖 a strategy 𝑠′𝑖 is strictly domi-
nated if 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) for all 𝑠−𝑖 ∈ 𝑆−𝑖.
Let 𝑠𝑖, 𝑠′𝑖 ∈ 𝑆𝑖. Then 𝑠′𝑖 is weakly dominated by 𝑠𝑖 if 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) for all 𝑠−𝑖 ∈ 𝑆−𝑖 and there is
𝑠′−𝑖 ∈ 𝑆−𝑖 such that 𝑢𝑖(𝑠𝑖, 𝑠′−𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑠′−𝑖).
Let 𝑠𝑖, 𝑠′𝑖 ∈ 𝑆𝑖. Then 𝑠′𝑖 is very weakly dominated by 𝑠𝑖 if 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) for all 𝑠−𝑖 ∈ 𝑆−𝑖.
Then we say that a strategy is (strictly, weakly, very weakly) dominant if it (strictly, weakly, very weakly)
dominates any other strategy.

Theorem 4.7. Any pure strategy profile 𝑠 ∈ 𝑆 such that 𝑠𝑖 is very weakly dominant is a Nash equilibrium.

The same claim can be also proven in the mixed strategy setting.
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5 Extensive Form Games

Static games (modeled using strategic-form games) cannot capture games that unfold over time. In partic-
ular, as all players move simultaneously, there is no way to model situations in which the order of moves
is important. Imagine e.g. chess where players take turns, in every round, a player knows all turns of
the opponent before making his own turn. There are many examples of dynamic games: markets that
change over time, political negotiations, models of computer systems, etc.

We model dynamic games using extensive-form games, a tree-like model that allows us to express the
sequential nature of games. We start with perfect information games, where each player always knows
the results of all previous moves. Then generalize to imperfect information, where players may have only
partial knowledge of these results (e.g. most card games).

Example 5.1. Consider a game:

Figure 5.1: Extensive form games

Here ℎ0, ℎ1, ℎ2 are non-terminal nodes, leaves are terminal nodes. Each non-terminal node is owned by
a player who chooses an action, e.g. ℎ1 is owned by player 2 who chooses either 𝐾 or 𝑈 . Every action
results in a transition to a new node, so choosing 𝐿 in ℎ0 results in a move to ℎ1. When a play reaches a
terminal node, players collect payoffs, e.g. the leftmost terminal node gives 3 to player 1 and 1 to player
2.
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5.1 Basic Concepts

Definition 5.1. A perfect-information extensive-form game is a tuple 𝐺 = (𝑁 , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢)where

• 𝑁 = {1, … , 𝑛} is a set of 𝑛 players, 𝐴 is a (single) set of actions;
• 𝐻 is a set of non-terminal (choices) nodes, 𝑍 is a set of terminal nodes (assume 𝑍 ∩ 𝐻 = ∅),
denote ℋ = 𝐻 ∪ 𝑍 ;

• 𝜒 ∶ 𝐻 → (2𝐴 ⧵ {∅}) is the action function, which assigns to each non-terminal choice node a
non-empty set of enabled actions;

• 𝜌 ∶ 𝐻 → 𝑁 is the player function, which assigns to each non-terminal node a player 𝑖 who
chooses an action there, we define 𝐻𝑖 ∶= {ℎ ∈ 𝐻 |𝜌(ℎ) = 𝑖};

• 𝜋 ∶ 𝐻 × 𝐴 → ℋ is the successor function, which maps a non-terminal node and an action to a
new node, such that

– ℎ0 is the only node that is not in the image of 𝜋 (i.e. nothing maps to the root);
– for all ℎ1, ℎ2 ∈ 𝐻 and for all 𝑎1 ∈ 𝜒(ℎ1) and all 𝑎2 ∈ 𝜒(ℎ2), if 𝜋(ℎ1, 𝑎1) = 𝜋(ℎ2, 𝑎2), then ℎ1 = ℎ2

and 𝑎1 = 𝑎2;
• 𝑢 = (𝑢1, … , 𝑢𝑛), where each 𝑢𝑖 ∶ 𝑍 → ℝ is a payoff function for player 𝑖 in the terminal nodes of
𝑍 .

We say that ℎ′ is a child of ℎ, and ℎ is a parent of ℎ′ if there is 𝑎 ∈ 𝜒(ℎ) such that ℎ′ = 𝜋(ℎ, 𝑎). A path
from ℎ ∈ 𝐻 to ℎ′ ∈ 𝐻 is a sequence ℎ1𝑎2ℎ2𝑎3ℎ3…ℎ𝑘−1𝑎𝑘ℎ𝑘 where ℎ1 = ℎ, ℎ𝑘 = ℎ′ and 𝜋(ℎ𝑗−1, 𝑎𝑗) = ℎ𝑗 for
every 1 < 𝑗 ≤ 𝑘.

Note

Note that, in particular, ℎ is a path from ℎ to ℎ.

Also, ℎ′ ∈ ℋ is reachable from ℎ ∈ ℋ if there is a path from ℎ to ℎ′.

Note

If ℎ′ is reachable from ℎ, we say that ℎ′ is a descendant of ℎ and ℎ is an ancestor of ℎ′.

Every perfect-information extensive-form game can be seen as a game on a rooted tree (ℋ , 𝐸, ℎ0)where

• ℋ = 𝐻 ∪ 𝑍 is a set of nodes,
• 𝐸 ⊆ ℋ × ℋ is a set of edges defined by (ℎ, ℎ′) ∈ 𝐸 iff ℎ ∈ 𝐻 and there is a 𝑎 ∈ 𝜒(ℎ) such that
𝜋(ℎ, 𝑎) = ℎ′,

• ℎ0 is the root.

Example 5.2. Consider a game
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Figure 5.2: Trust game

Two players, both start with 5$ and player 2 is a broker who wants to “help” player 1. Player 1 either
distrusts (D) player 2 and keeps the money (payoffs (5, 5)), or trusts (T) player 2 and passes 5$ to player 2.
If player 1 chooses to trust player 2, the total money (10) is doubled by the experimenter in the hands of
player 2. Player 2 may either keep (K) the additional 15$ (resulting in (0, 20)), or share (S) it with player
1 (resulting in (7.5, 12.5)).

Let us put 𝑁 = {1, 2} , 𝐴 = {𝐷, 𝑇 , 𝐾 , 𝑆}, 𝐻 = {ℎ0, ℎ1} and 𝑍 = {𝑧1, 𝑧2, 𝑧3}. Moreover

𝜒(ℎ0) = {𝐷, 𝑇 } , 𝜒(ℎ1) = {𝑆, 𝐾}

and 𝜌(ℎ0) = 1, 𝜌(ℎ1) = 2 with

𝜋(ℎ0, 𝐷) = 𝑧1, 𝜋(ℎ0, 𝑇 ) = ℎ1, 𝜋(ℎ1, 𝐾) = 𝑧2, 𝜋(ℎ1, 𝑆) = 𝑧3
and lastly

𝑢(𝑧1) = (5, 5), 𝑢(𝑧2) = (0, 20), 𝑢(𝑧3) = (7.5, 12.5).

Example 5.3 (Stackelberg Competition). Very similar to Cournot duopoly, this time we have two identi-
cal firms, players 1 and 2, produce some good. Denote by 𝑞1 and 𝑞2 quantities produced by firms 1 and 2,
resp. The total quantity of products in the market is 𝑞1 + 𝑞2. The price of each item is 𝜅 − 𝑞1 − 𝑞2 where
𝜅 > 0 is fixed. Firms have a common per-item production cost 𝑐.
As opposed to Cournot duopoly, firm 1 moves first, and chooses the quantity 𝑞1 ∈ [0,∞). Afterward, the
firm 2 chooses 𝑞2 ∈ [0,∞) (knowing 𝑞1) and then the firms get their payoffs.
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As an extensive-form game, we get

𝑁 = {1, 2} , 𝐴 = [0,∞),
𝐻 = {ℎ0, ℎ𝑞11 |𝑞1 ∈ [0,∞)} , 𝑍 = {𝑧𝑞1,𝑞2 |𝑞1, 𝑞2 ∈ [0,∞)} ,

𝜒(ℎ0) = [0,∞), 𝜒(ℎ𝑞11 ) = [0,∞), 𝜌(ℎ0) = 1, 𝜌(ℎ𝑞11 ) = 2,
𝜋(ℎ0, 𝑞1) = ℎ𝑞11 , 𝜋(ℎ𝑞11 , 𝑞2) = 𝑧𝑞1,𝑞2 ,

𝑢(𝑧𝑞1,𝑞2) = (𝑞1(𝜅 − 𝑞1 − 𝑞2) − 𝑞1𝑐
𝑞2(𝜅 − 𝑞1 − 𝑞2) − 𝑞2𝑐) .

So this game is huge – it is shallow but very wide.

Example 5.4 (Chess). Surely, 𝑁 = {1, 2}. Denoting Boards the set of all (appropriately encoded) board
positions, we define ℋ = 𝐵 × {1, 2} where

𝐵 = {𝑤 ∈ Boards+| no board repeats ≥ 3 times in 𝑤} .

Tip

Here Boards+ is the set of all non-empty sequences of boards

Surely, 𝑍 consists of all nodes (𝑤𝑏, 𝑖), here 𝑏 ∈ Boards, where either 𝑏 is checkmate for player 𝑖, or 𝑖 does
not have a move in 𝑏, or every move of 𝑖 in 𝑏 leads to a board with three occurrences in 𝑤 . Also, 𝜒(𝑤𝑏, 𝑖)
is the set of all possible moves of player 𝑖 in 𝑤𝑏 and 𝜌(𝑤𝑏, 𝑖) = 𝑖. Then 𝜋 is defined by 𝜋((𝑤𝑏, 𝑖), 𝑎) =
(𝑤𝑏𝑏′, 3 − 𝑖) where 𝑏′ is obtained from 𝑏 according to the move 𝑎. The initial board is ℎ0 = (𝑏0, 1) and
𝑢𝑗(𝑤𝑏, 𝑖) ∈ {1, 0, −1}, where 1 means “win”, 0 means “draw”, and −1 means “loss” for player 𝑗.

5.2 Pure strategies

Let 𝐺 = (𝑁 , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢) be a perfect-information extensive-form game.

Definition 5.2. A pure strategy of player 𝑖 in 𝐺 is a function 𝑠𝑖 ∶ 𝐻𝑖 → 𝐴 such that for every ℎ ∈ 𝐻𝑖 we
have 𝑠𝑖(ℎ) ∈ 𝜒(ℎ).

We denote by 𝑆𝑖 the set of all pure strategies of player 𝑖 in 𝐺. Denote by 𝑆 = 𝑆1 × ⋯ × 𝑆𝑛 the set of
all pure strategy profiles. Note that each pure strategy profile 𝑠 ∈ 𝑆 determines a unique path 𝑤𝑠 =
ℎ0𝑎1ℎ1…ℎ𝑘−1𝑎𝑘ℎ𝑘 form ℎ0 to a terminal node ℎ𝑘 by

𝑎𝑗 = 𝑠𝜌(ℎ𝑗−1)(ℎ𝑗−1) ∀0 < 𝑗 ≤ 𝑘,
so we can denote by 𝑂(𝑠) the terminal node reach by 𝑤𝑠 .
Abusing notation a bit, we denote by 𝑢𝑖(𝑠) the value 𝑢𝑖(𝑂(𝑠)) of the payoff for player 𝑖 when the terminal
node 𝑂(𝑠) is reached using strategies of 𝑠.
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Note

The tree is assumed to have finite depth here.

Example 5.5. Recall the game

Figure 5.3: Trust game

A pure strategy profile (𝑠1, 𝑠2) where

𝑠1(ℎ0) = 𝑇 and 𝑠2(ℎ1) = 𝐾.

5.3 Extensive-Form vs Strategic-Form

The extensive-form game 𝐺 determines the corresponding strategic-form game �̂� = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ).

Note

Here note that the set of players 𝑁 and the sets of pure strategies 𝑆𝑖 are the same in 𝐺 and in the
corresponding game.
The payoff functions 𝑢𝑖 in �̂� are understood as functions on the pure strategy profiles of 𝑆 = 𝑆1×⋯×𝑆𝑛.

With this definition, we may apply all solution concepts and algorithms developed for strategic-form
games to the extensive form games.

Note

We often consider the extensive-form to be only a different way of representing the corresponding
strategic-form game and do not distinguish between them.
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There are some issues, namely whether all notions from the strategic-form area make sense in the
extensive-form. Also, naive application of algorithms may result in unnecessarily high complexity.

Important

For now, let us consider pure strategies only!

Example 5.6. Recall the game

Figure 5.4: Trust game

Is any strategy strictly (weakly, very weakly) dominant? If player 1 distrusts (D), player 2 might just as
well play any of the two strategies (so there are no strictly dominant strategies). But playing 𝐾 to ℎ1
weakly dominates playing 𝑆.

5.3.1 Criticism of Nash Equilibria

Example 5.7. Consider a game
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Find all pure strategies of both players – for player 2, there are 4 strategies (𝐾𝐾 ′, 𝐾𝑈 ′, 𝑈𝐾 ′, 𝑈 𝑈 ′ with
the usual notation ℎ1 ↦ 𝐾, ℎ2 ↦ 𝐾 ′ for 𝐾𝐾 ′). Is any strategy (strictly, weakly, very weakly) dominant?
For player 2, 𝑈𝐾 ′ is weakly dominant. Is any strategy (strictly, weakly, very weakly) dominated? Is any
strategy never best response? Are there Nash equilibria in pure strategies?

Table 5.1: Table for extensive-form game

𝐾𝐾 ′ 𝐾𝑈 ′ 𝑈𝐾 ′ 𝑈𝑈 ′

𝐿 (3, 1) (3, 1) (1, 3) (1, 3)
𝑅 (2, 1) (0, 0) (2, 1) (0, 0)

Writing it in a table converts it into a strategic-form game. As such, it is much easier to see Nash equilibria
𝑅, 𝑈𝐾 ′ and 𝐿, 𝑈𝑈 ′. When we examine (𝐿, 𝑈 𝑈 ′), we obtain:

• player 2 threats to play 𝑈 ′ in ℎ2,
• as a result, player 1 plays 𝐿,
• player 2 reacts to 𝐿 by playing the best response, i.e. 𝑈 .

However, the threat is not credible, once a play reaches ℎ2, a rational player 2 chooses 𝐾 ′. Now examine
(𝑅, 𝑈𝐾 ′), which is sensible in the following sense

• player 2 plays the best response in both ℎ1 and ℎ2,
• player 1 plays the “best response” in ℎ0 assuming that player 2 will play his best responses in the
future.

This equilibrium is called subgame perfect.

Given ℎ ∈ ℋ , we denote ℋ ℎ the set of all nodes reachable from ℎ.
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Definition 5.3 (Subgame). A subgame 𝐺ℎ of 𝐺 rooted at ℎ ∈ ℋ is the restriction of 𝐺 to nodes reachable
from ℎ in the game tree. More precisely,

𝐺ℎ = (𝑁 , 𝐴, 𝐻 ℎ, 𝜒ℎ, 𝜌ℎ, 𝜋ℎ, ℎ, 𝑢ℎ)

where 𝐻 ℎ = 𝐻 ∩ ℋ ℎ, 𝑍ℎ = 𝑍 ∩ ℋ ℎ, 𝜒ℎ and 𝜌ℎ are restrictions of 𝜒 and 𝜌 to 𝐻 ℎ, respectively. Moreover

• 𝜋ℎ is defined for ℎ′ ∈ 𝐻 ℎ and 𝑎 ∈ 𝜒ℎ(ℎ′) by 𝜋ℎ(ℎ′, 𝑎) = 𝜋(ℎ′, 𝑎);
• each 𝑢ℎ𝑖 is a restriction of 𝑢𝑖 to 𝑍ℎ.

Tip

Given a function 𝑓 ∶ 𝐴 → 𝐵 and 𝐶 ⊆ 𝐴, a restriction of 𝑓 to 𝐶 is a function 𝑔 ∶ 𝐶 → 𝐵 such that
𝑔(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝐶

Definition 5.4 (Subgame Perfect Equilibrium). A subgame perfect equilibrium (SPE) in pure strate-
gies is a pure strategy profile 𝑠 ∈ 𝑆 such that for any subgame 𝐺ℎ of 𝐺, the restriction of 𝑠 to 𝐻 ℎ is a Nash
equilibrium in pure strategies in 𝐺ℎ.

Note

A restriction of 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 to 𝐻 ℎ is a strategy profile 𝑠ℎ = (𝑠ℎ1 , … , 𝑠ℎ𝑛 ) where 𝑠ℎ𝑖 (ℎ′) = 𝑠𝑖(ℎ′) for
all 𝑖 ∈ 𝑁 and all ℎ′ ∈ 𝐻𝑖 ∩ 𝐻 ℎ.

Example 5.8. Recall the Stackelberg competition Example 5.3. Player 1 chooses 𝑞1, and we know that
the best response of player 2 is 𝑞2 = (𝜃 − 𝑞1)/2 where 𝜃 = 𝜅 − 𝑐. Then

𝑢1(𝑧𝑞1,𝑞2) = 𝑞1(𝜃 − 𝑞1 − 𝜃/2 − 𝑞1/2) = (𝜃/2)𝑞1 − 𝑞21/2

which is maximized by 𝑞1 = 𝜃/2, giving 𝑞2 = 𝜃/4. So

𝑢1(𝑧𝑞1,𝑞2) = 𝜃2/8, 𝑢2(𝑧𝑞1,𝑞2) = 𝜃2/16

Note that firm 1 has an advantage as a leader.

5.4 Backward Induction

An algorithm for computing SPE for finite perfect-information extensive-form games.

Definition 5.5 (Backward Induction). We inductively “attach” to every node ℎ a pure strategy profile
𝑠ℎ = (𝑠ℎ1 , … , 𝑠ℎ𝑛 ) in 𝐺ℎ, together with a vector of expected payoffs 𝑢(ℎ) = (𝑢1(ℎ), … , 𝑢𝑛(ℎ)).
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• Initially - Attach to each terminal node 𝑧 ∈ 𝑍 the empty profile 𝑠𝑧 = (∅,… , ∅) and the payoff
vector 𝑢(𝑧) = (𝑢1(𝑧), … , 𝑢𝑛(𝑧)).

• While (there is an unattached node ℎ with all children attached):

1. Let 𝐾 be the set of all children of ℎ;
2. Let

ℎmax ∈ argmax
ℎ′∈𝐾

𝑢𝜌(ℎ)(ℎ′);

3. Attach to ℎ a strategy profile 𝑠ℎ where

– 𝜋(ℎ, 𝑠ℎ𝜌(ℎ)(ℎ)) = ℎmax;

– for all 𝑖 ∈ 𝑁 and all ℎ′ ∈ 𝐻 ℎ𝑖 ⧵ {ℎ} (at the same time ℎ′ ∈ 𝐻 ℎ̄ ∩ 𝐻𝑖 for an appropriate ℎ̄ ∈ 𝐾 )
define 𝑠ℎ𝑖 (ℎ′) = 𝑠ℎ̄𝑖 (ℎ′) where ℎ̄ ∈ 𝐾 ;

4. Attach to ℎ the vector of expected payoffs 𝑢(ℎ) ∶= 𝑢(ℎmax).

Example 5.9. Recall the game

Then clearly
𝑠𝑧1 = 𝑠𝑧2 = 𝑠𝑧3 = 𝑠𝑧4 = (∅, ∅).

Now for ℎ1, where the second player makes a choice (and his better choice is 𝑈 getting him (1, 3)), we get

𝑠ℎ1 = (𝑠ℎ11 , 𝑠ℎ22 ) = (∅, {(ℎ1, 𝑈 )}) ⟹ 𝑢(ℎ1) = (1, 3)

and similarly

𝑠ℎ2 = (
𝑠ℎ21⏞∅ ,

𝑠ℎ22
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞{(ℎ2, 𝐾 ′)}) ⟹ 𝑢(ℎ2) = (2, 1).

Finally considering ℎ0, where 𝜌(ℎ0) = 1, we see that

𝑠ℎ0 = ({(ℎ0, 𝑅)} , {(ℎ1, 𝑈 ), (ℎ2, 𝐾 ′)}) ⟹ 𝑢(ℎ0) = (2, 1).
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Theorem 5.1. For every finite perfect-information extensive-form game and for each node ℎ the attached
𝑠ℎ is a SPE and the attached vector 𝑢(ℎ) satisfies 𝑢(ℎ) = 𝑢(𝑠ℎ) = (𝑢1(𝑠ℎ), … , 𝑢𝑛(𝑠ℎ)).

Proof. We will lead the proof by induction. In any terminal node 𝑧 no player has any choice, thus empty
strategies make a SPE with payoffs 𝑢(𝑧).
Now assume that ℎ is being processed in the while loop. Denote by ̄𝑠ℎ a profile obtained from 𝑠ℎ by
changing the strategy of player 𝑖. We split the situation into two different cases. First, we assume that
player 𝑖 does not control ℎ, i.e. 𝜌(ℎ) ≠ 𝑖. Let ̄𝑠ℎmax be the restriction of ̄𝑠ℎ to the subgame rooted in ℎmax,
see Figure 5.5.

h

hₘ

sᵐ s̄ᵐ

{ }K =

subgame

Figure 5.5: Case when player 𝑖 does not control ℎ

Here hₘ denotes ℎmax and sᵐ, and s̄m , the profiles 𝑠ℎmax , and ̄𝑠ℎmax respectively. By induction we then get

𝑢𝑖(𝑠ℎ) = 𝑢𝑖(𝑠ℎmax) ≥ 𝑢𝑖( ̄𝑠ℎmax) = 𝑢𝑖( ̄𝑠ℎ).

Second, we assume 𝑖 = 𝜌(ℎ) and denote by ℎ̄ = ̄𝑠ℎ𝜌(ℎ). Let ̄𝑠ℎ̄ be the restriction of ̄𝑠ℎ to the subgame rooted
in ℎ̄. Then also, see Figure 5.6,

𝑢𝑖( ̄𝑠ℎ) = 𝑢𝑖( ̄𝑠ℎ̄) ≤ 𝑢𝑖(𝑠ℎ̄) ≤ 𝑢𝑖(𝑠ℎmax) = 𝑢𝑖(𝑠ℎ). (5.1)

h

h̄

sᵇ s̄ᵇ

{ }K =

subgames

hₘ

sᵐ

Figure 5.6: Case when player 𝑖 controls ℎ, sᵇ denotes 𝑠ℎ̄ and s̄b profile ̄𝑠ℎ̄
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The first inequality in (5.1) is true by the induction step and the second holds by the definition of ℎmax. In
both cases the deviation of player 𝑖 leads to a smaller or equal playoff. Hence 𝑢(𝑠ℎ) = 𝑢(𝑠ℎmax) = 𝑢(ℎmax) =
𝑢(ℎ). This concludes the proof.

Example 5.10 (Chess – continued). Recall that in the model of chess, the payoffs were from {1, 0, −1} and
𝑢1 = −𝑢2 (i.e. chess is a zero-sum game). By Theorem 5.1, there is a SPE in pure strategies 𝑠∗ = (𝑠∗1 , 𝑠∗2 ).
However, then one of the following holds:

1. white has a winning strategy (if 𝑢1(𝑠∗) = 1 and thus 𝑢2(𝑠∗) = −1);
2. black has a winning strategy (if 𝑢2(𝑠∗) = 1 and thus 𝑢1(𝑠∗) = −1);
3. both players have strategies to force draw (if 𝑢1(𝑠∗) = 0 and thus 𝑢2(𝑠∗) = 0).

Now the question arises what is the right answer, but, in truth, nobody knows yet, as the tree of the game
is too big. Even simplifying to trees only about 200 edges deep and with approximately 5 moves per node
on average, we get a total count of 5200 nodes!

Recall that in the second step of Definition 5.5, the algorithm may choose an arbitrary ℎmax ∈
argmaxℎ′∈𝐾 𝑢𝜌(ℎ)(ℎ′) and always obtain a SPE. Thus to compute all SPEs, the algorithm may systemati-
cally search through all possible choices of ℎmax throughout the induction.

Also one can realize that backward induction, see Definition 5.5, is too inefficient, as it unnecessarily
searches through the whole tree. There are better methods mitigating this problem, e.g. 𝛼-𝛽-pruning.

5.4.1 Criticism of Subgame Perfect Equilibria

Example 5.11. Consider the following game, called centipede:

Figure 5.7: The centipede game

By backward induction, we can obtain that the SPE in pure strategies is (𝐷𝐷𝐷, 𝐷𝐷) – this should be at
least a little bit weird. There are serious issues here:

• In a laboratory setting, people usually play 𝐴 for several steps.
• There is a theoretical problem: Imagine, that you are player 2. What would you do when player 1
chooses 𝐴 in the first step? The SPE analysis says that you should go down, but the same analysis
also says that the situation you are in cannot appear :-)
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6 Mixed and Behavioral Strategies

6.1 Introduction

Assume two players and a finite extensive-form game 𝐺

Definition 6.1. Amixed strategy 𝜎𝑖 of player 𝑖 in 𝐺 is a mixed strategy of player 𝑖 in the corresponding
strategic-form game.

In other words, a mixed strategy 𝜎𝑖 in 𝐺 is a probability distribution of 𝑆𝑖 (recall that 𝑆𝑖 is the set of all
pure strategies, i.e. functions of the form 𝑠𝑖 ∶ 𝐻𝑖 → 𝐴). As before, we denote by Σ𝑖 the set of all mixed
strategies of player 𝑖.

Definition 6.2. A behavioral (mixed) strategy of player 𝑖 in 𝐺 is a function 𝛽𝑖 ∶ 𝐻𝑖 → Δ(𝐴) such that
for every ℎ ∈ 𝐻𝑖 and every 𝑎 ∈ 𝐴: 𝛽𝑖(ℎ)(𝑎) = 0 if 𝑎 ∉ 𝜒(ℎ).

Important

For mixed strategy, we randomize once for our behaviors everywhere, which we then follow deter-
ministically.
On the other hand, for the behavioral strategies we randomize for each choice of the action we take.

Given a profile 𝛽 = (𝛽1, 𝛽2) of behavioral strategies, we denote by 𝑃𝛽(𝑧) the probability of reaching 𝑧 ∈ 𝑍
when 𝛽 is used, i.e.,

𝑃𝛽(𝑧) =
𝑘

∏
𝑙=1

𝛽𝜌(ℎ𝑙−1)(ℎ𝑙−1)(𝑎𝑙),

where ℎ0𝑎1ℎ1𝑎2ℎ2…𝑎𝑘ℎ𝑘 is the unique path from ℎ0 to ℎ𝑘 = 𝑧. We also define the expected payoff under
the behavioral strategy 𝛽 as 𝑢𝑖(𝛽) ∶= ∑𝑧∈𝑍 𝑃𝛽(𝑧)𝑢𝑖(𝑧).

6.2 Examples

Example 6.1. Consider a game given by a tree in Figure 6.1.
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Figure 6.1: Mixed behavioral strategies

Then pure strategies of player 1 are 𝐴𝐶,𝐴 ̄𝐶, �̄�𝐶, �̄� ̄𝐶 and an example of a mixed strategy 𝜎1 of player 1
might be:

𝜎1(𝐴𝐶) = 1
3 , 𝜎1(𝐴

̄𝐶) = 1
9 , 𝜎1(�̄�𝐶) =

1
6 , 𝜎1(�̄�

̄𝐶) = 11
18 .

On the other hand, an example of behavioral strategies of both players can be:

• player 1: 𝛽1(ℎ0)(𝐴) = 1
3 and 𝛽1(ℎ3)(𝐶) = 1

2 ;
• player 2: 𝛽2(ℎ1)(𝐵) = 1

4 and 𝛽2(ℎ2)(𝐷) = 1
5 .

Then for example 𝑃(𝛽1,𝛽2)(𝑧2) = 1
3 (1 −

1
4)

1
2 = 1

8 .
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Figure 6.2: Game 𝐺 with assigned payoffs

After assigning payoffs, see Figure 6.2, we can compute expected payoff of the behavioral strategy 𝛽 :

𝑢1(𝛽) = 𝑃𝛽(𝑧1) ⋅ 1 + 𝑃𝛽(𝑧2) ⋅ 2 + 𝑃𝛽(𝑧3) ⋅ 3 + 𝑃𝛽(𝑧4) ⋅ 1 + 𝑃𝛽(𝑧5) ⋅ 5
= 1

3
1
41 +

1
3
3
4
1
22 +

1
3
3
4
1
23 +

2
3
1
51 +

2
3
4
55 ≈ 3.508.

Each pure strategy can be seen as a behavioral strategy. Consider e.g. 𝑠1 ∶ 𝐻1 → 𝐴 defined by 𝑠1(ℎ0) = 𝐴
and 𝑠1(ℎ3) = 𝐶 . The corresponding behavioral strategy 𝛽1 would satisfy 𝛽1(ℎ0)(𝐴) = 𝛽1(ℎ3)(𝐶) = 1
(i.e. select actions chosen by 𝑠1 with probability 1). Now given a behavioral strategy 𝛽2 of player 2 defined
by 𝛽2(ℎ1)(𝐵) = 1

4 and 𝛽2(ℎ2)(𝐷) = 1
5 we obtain

𝑃(𝑠1,𝛽2)(𝑧2) = 𝑃(𝛽1,𝛽2)(𝑧2) = 1 (1 − 1
4) 1 =

3
4 .

6.3 Equivalence

Let 𝛼 = (𝛼1, 𝛼2) be a strategy profile where each 𝛼𝑖 is either mixed or behavioral.

The game is then played as follows:

• if 𝛼1 is mixed, select randomly a pure strategy 𝛽1 according to 𝛼1, else 𝛽1 ∶= 𝛼1;
• if 𝛼2 is mixed, select randomly a pure strategy 𝛽2 according to 𝛼2, else 𝛽2 ∶= 𝛼2;
• play (𝛽1, 𝛽2) and collect payoffs.

Denote the resulting payoffs by 𝑢1(𝛼) and 𝑢2(𝛼).
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Lemma 6.1. For every mixed/behavioral strategy 𝛼1 of player 1 there is a behavioral/mixed strategy 𝛼′1 such
that for every mixed/behavioral strategy 𝛼2 we have that 𝑢𝑖(𝛼1, 𝛼2) = 𝑢𝑖(𝛼′1, 𝛼2) for 𝑖 ∈ {1, 2}.

Example 6.2. Consider the following game:

A B

h₀

U V

h₁

DC

h₂

z₀

z₁

z₂ z₃

1

2

1

Let us first focus on “converting” behavioral strategies to mixed ones. Let 𝛼 = (𝛼1, 𝛼2) be a behavioral
strategy profile, that is

• 𝛼1(ℎ0)(𝐴) = 𝑝 and 𝛼1(ℎ2)(𝐶) = 𝑞;
• 𝛼2(ℎ1)(𝑈 ) = 𝑢.

Then the equivalent mixed strategy 𝛼′1 of player 1 is:

𝛼′1(𝐴𝐶) = 𝑝𝑞, 𝛼′1(𝐴𝐷) = 𝑝(1 − 𝑞),
𝛼′1(𝐵𝐶) = (1 − 𝑝)𝑞, 𝛼′1(𝐵𝐷) = (1 − 𝑝)(1 − 𝑞),

because

𝑃(𝛼1,𝛼2)(𝑧2) = (1 − 𝑝)𝑢 = (
𝛼 ′1(𝐵𝐶)

⏞⏞⏞⏞⏞⏞⏞⏞⏞(1 − 𝑝)𝑞 +
𝛼 ′1(𝐵𝐷)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(1 − 𝑝)(1 − 𝑞)) ⋅ 𝑢 = 𝑃(𝛼′1 ,𝛼2)(𝑧2)
and similarly for the other terminal nodes.

Let us now turn our attention to “converting” mixed strategies to behavioral ones. Let 𝛼1 be a mixed
strategy of player 1:

𝛼1(𝐴𝐶) = 𝑒𝐴𝐶 , 𝛼1(𝐴𝐷) = 𝑒𝐴𝐷 ,
𝛼1(𝐵𝐶) = 𝑒𝐵𝐶 , 𝛼1(𝐵𝐷) = 𝑒𝐵𝐷 .

Then we can construct an equivalent behavioral strategy 𝛼′1 as

𝛼′1(ℎ0)(𝐴) = 𝑒𝐴𝐶 + 𝑒𝐴𝐷 , 𝛼′1(ℎ0)(𝐵) = 𝑒𝐵𝐶 + 𝑒𝐵𝐷 ,
𝛼′1(ℎ2)(𝐶) =

𝑒𝐵𝐶
𝑒𝐵𝐶 + 𝑒𝐵𝐷

, 𝛼′1(ℎ2)(𝐷) =
𝑒𝐵𝐷

𝑒𝐵𝐶 + 𝑒𝐵𝐷
,
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where 𝑒𝐵𝐶
𝑒𝐵𝐶+𝑒𝐵𝐷 can be interpreted as a conditional probability 𝑃(𝐶|𝐵𝐶 ∪ 𝐵𝐷). We can then check our

calculation:

𝑃(𝛼1,𝛼2)(𝑧3) = 𝑒𝐵𝐶 ⋅ (1 − 𝑢) =
𝛼 ′1(ℎ0)𝐵

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑒𝐵𝐶 + 𝑒𝐵𝐷) ⋅
𝛼 ′1(ℎ2)(𝐶)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑒𝐵𝐶
𝑒𝐵𝐶 + 𝑒𝐵𝐷

⋅(1 − 𝑢) = 𝑃(𝛼 ′1 ,𝛼2)(𝑧3)
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7 Imperfect-Information Games

7.1 Introduction

Is it possible to model Matching pennies using extensive-form games?

Figure 7.1: Matching pennies

The problem is that player 2 is “perfectly” informed about the choice of player 1. In particular, there are
pure Nash equilibria (𝐻 , 𝑇𝐻) and (𝑇 , 𝑇𝐻) in the extensive-form game as opposed to the strategic-form,
where there is none. Reversing the order of players does not help.

Thus, we need to extend the formalism to be able to hide some information about previous moves.

Matching pennies can be modeled using an imperfect-information extensive-form game:

Figure 7.2: Imperfect-information Matching pennies
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Here ℎ1 and ℎ2 belong to the same information set of player 2. As a result, player 2 is not able to distinguish
between ℎ1 and ℎ2. So even though players do not move simultaneously, the information player 2 has
about the current situation is the same as in the simultaneous case

Note

There must be the same set of actions from all nodes of the information set. Otherwise, the player
would be able to deduce information about the current state.

Caution

No history is inherently encoded in the game (so if we want to provide past moves of the player as
input for his decision process, we have to encode it in the notes themselves). Otherwise, the player
could be able to deduce more information about the current state of the game.

7.2 Definition of Imperfect-Information Game

Definition 7.1. An imperfect-information extensive-form game is a tuple 𝐺imp = (𝐺perf, 𝐼 ) where

• 𝐺perf = (𝑁 , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢) is a perfect-information extensive-form game (called the underly-
ing game),

• 𝐼 = (𝐼1, … , 𝐼𝑛) where for each 𝑖 ∈ 𝑁 = {1, … , 𝑛}
𝐼𝑖 = {𝐼𝑖,1, … , 𝐼𝑖,𝑘𝑖}

is a collection of information sets for player 𝑖 that satisfies

– ⋃𝑘𝑖𝑗=1 𝐼𝑖,𝑗 = 𝐻𝑖 and 𝐼𝑖,𝑗 ∩ 𝐼𝑖,𝑘 = ∅ for 𝑗 ≠ 𝑘 (i.e. 𝐼𝑖 is a partition of 𝐻𝑖, see Definition 5.1);
– for all ℎ, ℎ′ ∈ 𝐼𝑖,𝑗 , we have 𝜌(ℎ) = 𝜌(ℎ′) and 𝜒(ℎ) = 𝜒(ℎ′) (i.e., nodes from the same information

set are owned by the same player and have the same sets of enabled actions).

Given ℎ ∈ 𝐻 , we denote by 𝐼 (ℎ) the information set 𝐼𝑖,𝑗 containing ℎ. Also, given an information set 𝐼𝑖,𝑗 ,
we denote by 𝜒(𝐼𝑖,𝑗) the of all action enabled in some (and hence all, per Definition 7.1) nodes of 𝐼𝑖,𝑗 .
Now we define the set of pure, mixed, and behavioral strategies in 𝐺imp as subsets of pure, mixed, and
behavioral strategies, resp., in 𝐺perf that respect the information sets. Let 𝐺imp = (𝐺perf, 𝐼 ) be an imperfect-
information extensive-form game where 𝐺perf = (𝑁 , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢).

Definition 7.2. A pure strategy of player 𝑖 in 𝐺imp is a pure strategy 𝑠𝑖 in 𝐺perf such that for all 𝑗 = 1, … , 𝑘
and all ℎ, ℎ′ ∈ 𝐼𝑖,𝑗 holds 𝑠𝑖(ℎ) = 𝑠𝑖(ℎ′).
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Tip

Note that each 𝑠𝑖 can also be seen as a function 𝑠𝑖 ∶ 𝐼𝑖 → 𝐴 such that for every 𝐼𝑖,𝑗 ∈ 𝐼𝑖 we have that
𝑠𝑖(𝐼𝑖,𝑗) ∈ 𝜒(𝐼𝑖,𝑗).

As before, we denote by 𝑆𝑖 the set of all pure strategies of player 𝑖 in 𝐺imp, and by 𝑆 = 𝑆1 × ⋯ × 𝑆𝑛 the set
of all pure strategy profiles. As in the perfect-information case we have a corresponding strategic-form
game ̄𝐺imp = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ).

7.3 Examples

Example 7.1 (Matching Pennies). Recall the game of matching pennies:

Figure 7.3: Matching pennies game

Here 𝐼1 = {𝐼1,1} where 𝐼1,1 = {ℎ0} and 𝐼2 = {𝐼2,1} where 𝐼2,1 = {ℎ1, ℎ2}. An example of pure strategies might
be:

• 𝑠1(𝐼1,1) = 𝐻 which describes strategy 𝑠1(ℎ0) = 𝐻 ;
• 𝑠2(𝐼2,1) = 𝑇 which describes strategy 𝑠2(ℎ1) = 𝑠2(ℎ2) = 𝑇 (it is also sufficient to specify 𝑠2(ℎ1) = 𝑇
since then by definition 𝑠2(ℎ2) = 𝑇 ).

Thus we really only have strategies 𝐻, 𝑇 for player 1 and 𝐻, 𝑇 for player 2.

Example 7.2. Consider now a game given by:
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Note that 𝐼1 = {𝐼1,1} where 𝐼1,1 = {ℎ0, ℎ3} and that 𝐼2 = {𝐼2,1} where 𝐼2,1 = {ℎ1, ℎ2}. The pure strategies in
this example are

• 𝑠(𝐼1,1) ∈ {𝐴, 𝐵, 𝐶} for player 1;
• 𝑠(𝐼2,1) ∈ {𝐾, 𝐿} for player 2.

Playing 𝐴 or 𝐵 from ℎ3 is unreachable (or illegal/unfeasible) in this game with pure and mixed strategies.

7.4 Subgame-perfect Equilibria in Imperfect-Information Games

Now we shall turn our attention to the following game: h₂

What do we designate as subgames to allow the backward induction, with which we could calculate
subgame-perfect equilibria (or more precisely their equivalents here)? Only subtrees rooted in ℎ1, ℎ2, and
ℎ0 (together will all subtrees rooted in terminal nodes) seem reasonable. Note that subtrees rooted in
ℎ3 and ℎ4 cannot be considered as “independent” subgames because their individual solution cannot be
combined to a single best response in the information set {ℎ3, ℎ4}.
Let𝐺imp = (𝐺perf, 𝐼 ) be an imperfect-information extensive-form gamewhere𝐺perf = (𝑁 , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢)
is the underlying perfect-information extensive-form game.

Let us denote by 𝐻proper the set of all ℎ ∈ 𝐻 that satisfy the following:
For every ℎ′ reachable from ℎ (that includes the node ℎ itself), we have that either all nodes of 𝐼 (ℎ′) are
reachable from ℎ, or no node of 𝐼 (ℎ′) is reachable from ℎ.
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Note

Intuitively, ℎ ∈ 𝐻proper iff every information set 𝐼𝑖,𝑗 is either completely contained in the subtree
rooted in ℎ, or no node of 𝐼𝑖,𝑗 is contained in the subtree.

Definition 7.3. For every ℎ ∈ 𝐻proper we define a subgame 𝐺ℎ
imp to be the imperfect information game

(𝐺ℎ
perf, 𝐼 ℎ) where 𝐼 ℎ is the restriction of 𝐼 to 𝐻 ℎ.

Tip

Note that as subgames of 𝐺imp we consider only subgames of 𝐺perf that respect the information sets,
i.e. are rooted in nodes of 𝐻proper.

Definition 7.4. A strategy profile 𝑠 ∈ 𝑆 is a subgame-perfect equilibrium (SPE) if 𝑠ℎ is a Nash equilibrium
in every subgame 𝐺ℎ

imp of 𝐺imp (here ℎ ∈ 𝐻proper).

Important

The way we generalized subgame-perfect equilibria is not the only one. But others are more com-
plicated and use some kind of randomization.

7.4.1 Backwards Induction

Now we can generalize the backward induction to imperfect-information games, as we hypothesized,
along the following lines:

1. As in the perfect-information case, the goal is to label each node ℎ ∈ 𝐻proper ∪ 𝑍 with a SPE 𝑠ℎ and
a vector of payoffs 𝑢(ℎ) = (𝑢1(ℎ), … , 𝑢𝑛(ℎ)) for individual players according to 𝑠ℎ.

2. Starting with terminal nodes, the labeling proceeds bottom up. Terminal nodes are labeled similarly
as in the perfect-information case.

3. Consider ℎ ∈ 𝐻proper, let 𝐾 be the set of all ℎ′ ∈ (𝐻proper ∪ 𝑍)⧵{ℎ} that are ℎ’s closest descendants
out of 𝐻proper ∪ 𝑍 , i.e. ℎ′ ∈ 𝐾 ⟺ ℎ′ ≠ ℎ is reachable from ℎ and the unique path from ℎ to ℎ′
visits only nodes of ℋ ⧵ 𝐻proper (except the first and the last node). For every ℎ′ ∈ 𝐾 we already
computed a SPE 𝑠ℎ′ in 𝐺ℎ′

imp and the vector of corresponding payoffs 𝑢(ℎ′).
4. Now consider all nodes of 𝐾 as terminal nodes where each ℎ′ ∈ 𝐾 has payoffs 𝑢(ℎ′). This gives a

new game in which we compute an equilibrium ̄𝑠ℎ together with the vector 𝑢(ℎ). The equilibrium
𝑠ℎ is then obtained by “concatenating” ̄𝑠ℎ with all 𝑠ℎ′ , here ℎ′ ∈ 𝐾 , in the subgames 𝐺ℎ′

imp of 𝐺ℎ
imp.
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7.4.2 Examples

Example 7.3 (Mutually Assured Destruction). This example is an adaptation of the Analysis of Cuban
Missile Crisis of 1962 (as described in Games for Business and Economics by R. Gardner):

• The crisis started with the United States’ discovery of Soviet nuclear missiles in Cuba.
• The USSR then backed down, agreeing to remove the missiles from Cuba, which suggests that US
had a credible threat “if you don’t back off we both pay dearly”.

But could this be a credible threat? We shall model this situation as an extensive-form game:

• First, player 1 (US) chooses to either ignore the incident (𝐼 ), resulting in maintenance of status quo
(payoffs (0, 0)), or escalate the situation (𝐸).

• Following escalation by player 1, player 2 (USSR) can back down (𝐵), causing it to lose face (payoffs
(10, −10)), or it can choose to proceed to a nuclear confrontation (𝑁 ).

• Upon this choice, the players play a simultaneous-move game in which they can either retreat (𝑅),
or choose doomsday (𝐷).

– If both retreat, the payoffs are (−5, 5), a small loss due to a mobilization process.
– If either of them chooses doomsday, then the world destructs and payoffs are (−100, −100).

This game can be re-written into the following tree:

Figure 7.4: Mutually assured destruction

First and foremost, one can solve 𝐺ℎ2
imp (a strategic-form game). Then 𝐺ℎ1

imp by solving a game rooted in

ℎ1 with terminal nodes ℎ2 and 𝑧5 (payoffs in ℎ2 correspond to an equilibrium in 𝐺ℎ2
imp). Finally, one solves

𝐺imp by solving a game rooted in ℎ0 with terminal nodes ℎ1 and 𝑧6 (payoffs in ℎ1 have been computed in
the previous step). This produces 2 SPEs 𝑠1 = ((𝐼 , 𝑅), (𝑁 , 𝑅)) and 𝑠2 = ((𝐸, 𝐷), (𝐵, 𝐷)).
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7.5 Mixed and Behavioral Strategies

Definition 7.5. Amixed strategy 𝜎𝑖 of player 𝑖 in𝐺imp is amixed strategy of player 𝑖 in the corresponding
strategic-form game ̄𝐺imp = (𝑁 , (𝑆𝑖)𝑖∈𝑁 , 𝑢𝑖). As before, we denote by Σ𝑖 the set of all mixed strategies of
player 𝑖.

Do not forget that in the corresponding game ̄𝐺imp any strategy 𝑠𝑖 ∈ 𝑆𝑖 iff 𝑠𝑖 is a pure strategy that assigns
the same action to all nodes of every information set. Hence each 𝑠𝑖 ∈ 𝑆𝑖 can be seen as a function
𝑠𝑖 ∶ 𝐼𝑖 → 𝐴.

Definition 7.6. A behavioral strategy of player 𝑖 in 𝐺imp is a behavioral strategy 𝛽𝑖 in 𝐺perf such that
for all 𝑗 = 1, … , 𝑘𝑖 and all ℎ, ℎ′ ∈ 𝐼𝑖,𝑗 ∶ 𝛽𝑖(ℎ) = 𝛽𝑖(ℎ′) .

Here each 𝛽𝑖 can be seen as a function 𝛽𝑖 ∶ 𝐼𝑖 → Δ(𝐴) such that for all 𝐼𝑖,𝑗 ∈ 𝐼𝑖 we have supp (𝛽𝑖(𝐼𝑖,𝑗)) ⊆
𝜒(𝐼𝑖,𝑗).

Note

For behavioral strategy, the distribution of probabilities always stays the same across the informa-
tion set, unlike in the mixed strategy case, when the randomly selected pure strategy stays the same
across the strategy set

Example 7.4. Consider a game

A B

C D C D

h₁ h₂

h₀

1

1 1

Figure 7.5: Behavioral ≠ mixed strategies
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One mixed strategy is

(12(𝐴𝐶), 0(𝐵𝐷), 0(𝐵𝐶),
1
2(𝐵𝐷)) ,

but this mixed strategy cannot be expressed using behavioral strategies.

Note

Here 𝐴𝐶𝐶, 𝐴𝐶𝐷,𝐴𝐷𝐶, 𝐴𝐷𝐷, 𝐵𝐶𝐶, 𝐵𝐶𝐷, 𝐵𝐷𝐶, 𝐵𝐷𝐷 are pure strategies in perfect information. The
information set {ℎ1, ℎ′1} restricts us to𝐴𝐶, 𝐵𝐶, 𝐴𝐷, 𝐵𝐷, where the second strategy refers to a strategy
on the information set.
Also, notice that mixed strategies don’t really make sense in real life too much.

7.6 Perfect Recall

Example 7.5. Consider the following game of the so-called absent-minded driver:

Note that there is only one player: A driver who has to take a turn at a particular junction. There are
two identical junctions, the first one leads to a wrong neighborhood where the driver gets completely lost
(payoff 0), and the second one leads home (payoff 5). If the driver misses both, there is a long way home
(payoff 1). The problem is that after missing the first turn, the driver forgets that he missed the turn.

Notice that the behavioral strategy 𝛽1(𝐼1,1)(𝐿) = 1
2 has the expected payoff 3

2 . Also, it can be shown that
no mixed strategy gives a larger payoff than 1 since no pure strategy ever reaches the terminal node with
a payoff 5.

We say that player 𝑖 has perfect recall in 𝐺imp if the following holds:

• Every information set of player 𝑖 (i.e., his own) intersects every path from the root ℎ0 to a terminal
node at most once (so no absent-minded driver situation occurs, see Example 7.5).

• Every two paths from the root that end in the same information set of player 𝑖
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– pass through the same information sets of player 𝑖,
– and in the same order,
– and in every such information set the two paths choose the same actions.

Warning

These two paths, however, may pass through different information sets of other players and other
players may choose different actions along each of the paths!
I.e. each information set 𝐽 of player 𝑖 determines the sequence of information sets of player 𝑖 and
actions taken by player 𝑖 along any path reaching 𝐽 .

Theorem 7.1 (Kuhn, 1953). Assuming perfect recall, every mixed strategy can be translated to a behavioral
strategy (and vice versa) so that the payoff for the resulting strategy is the same in any mixed profile.
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8 Repeated Games

Recall the Prisoner’s dilemma game

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Imagine that the criminals are being arrested repeatedly. Can they somewhat reflect upon their experience
in order to play “better”? In this chapter, we consider strategic-form games played repeatedly:

• for finitely many rounds, the final payoff of each player will be the average of payoffs from all
rounds;

• infinitely many rounds, here we consider a discounted sum of payoff and the long-run average
payoff.

We will also analyze Nash and subgame-perfect equilibria.

Important

We stick with pure strategies only!

8.1 Finitely Repeated Games

Let 𝐺 = ({1, 2} , (𝑆1, 𝑆2), (𝑢1, 𝑢2)) be a finite strategic-form game of two players. We shall use 𝑆 𝑡 to denote
𝑆 𝑡 = 𝑆 × ⋯ × 𝑆⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑡 times

= ∏𝑡
𝑖=1 𝑆.

Definition 8.1. A 𝑇 -stage game 𝐺𝑇 -rep based on 𝐺 proceeds in 𝑇 stages so that in a stage 𝑡 ≥ 1, players
choose a strategy profile 𝑠𝑡 = (𝑠𝑡1, 𝑠𝑡2). After 𝑇 stages, both players collect the average payoff∑𝑇

𝑡=1 𝑢𝑖(𝑠𝑡)/𝑇 .

Definition 8.2. A history of length 0 ≤ 𝑡 ≤ 𝑇 is a sequence ℎ = 𝑠1⋯ 𝑠𝑡 ∈ 𝑆 𝑡 of 𝑡 strategy profiles.
Denote by 𝐻(𝑡) the set of all histories of length 𝑡 and let 𝜖 represent the empty history.
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A pure strategy for player 𝑖 in a 𝑇 -stage game 𝐺𝑇 -rep is a function

𝜏𝑖 ∶
𝑇−1
⋃
𝑡=0

𝐻(𝑡) → 𝑆𝑖,

which for every possible history chooses a next step for player 𝑖.

Every strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺𝑇 -rep induces a sequence of pure strategy profiles 𝑤𝜏 = 𝑠1⋯ 𝑠𝑇 in
𝐺 so that 𝑠𝑡𝑖 = 𝜏𝑖(𝑠1⋯ 𝑠𝑡−1). Given a pure strategy profile 𝜏 in 𝐺𝑇 -rep such that 𝑤𝜏 = 𝑠1⋯ 𝑠𝑇 , define the

payoffs 𝑢𝑖(𝜏 ) = ∑𝑇
𝑡=1 𝑢𝑖(𝑠𝑡)/𝑇 .

Example 8.1. Again remember the Prisoner’s dilemma:

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

This time, we shall assume it is a 3-stage game. Examples of histories might be:

𝜖, (𝐶, 𝑆), (𝐶, 𝑆)(𝑆, 𝑆), (𝐶, 𝑆)(𝑆, 𝑆)(𝐶, 𝐶).
As we have 𝐺3-rep this time, the last history is final, which induces that this history sequence can be
obtained with

𝜏1(𝜖) = 𝐶, 𝜏1((𝐶, 𝑆)) = 𝑆, 𝜏1((𝐶, 𝑆)(𝑆, 𝑆)) = 𝐶,
𝜏2(𝜖) = 𝑆, 𝜏2((𝐶, 𝑆)) = 𝑆, 𝜏2((𝐶, 𝑆)(𝑆, 𝑆)) = 𝐶.

Thus 𝑤𝜏 = (𝐶, 𝑆)(𝑆, 𝑆)(𝐶, 𝐶) and
𝑢1(𝜏 ) = (0 + (−1) + (−5))/3 = −2
𝑢2(𝜏 ) = (−20 + (−1) + −(5))/3 = −26

3

8.1.1 Finitely Repeated Games in Extensive-Form

Every 𝑇 -stage game 𝐺𝑇 -rep can be defined as an imperfect-information extensive-form game 𝐺rep
imp =

(𝐺rep
perf, 𝐼 ) such that 𝐺rep

perf = ({1, 2} , 𝐴, 𝐻 , 𝑍 , 𝜒 , 𝜌, 𝜋, ℎ0, 𝑢) where

• 𝐴 = 𝑆1 ∪ 𝑆2;
• 𝐻 = (𝑆1 × 𝑆2)<𝑇 ∪ (𝑆1 × 𝑆2)<𝑇 ⋅ 𝑆1 (intuitively, elements of (𝑆1 × 𝑆2)≤𝑘 are possible histories and
(𝑆1 × 𝑆2)<𝑘 ⋅ 𝑆1 is used to simulate a simultaneous play of 𝐺 letting player 1 choose first and player
2 second);

• 𝑍 = (𝑆1 × 𝑆2)𝑇 ;
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• 𝜒(𝜖) = 𝑆1 and 𝜒(ℎ ⋅ 𝑠1) = 𝑆2 for 𝑠1 ∈ 𝑆1, and 𝜒(ℎ ⋅ (𝑠1, 𝑠2)) = 𝑆1 for (𝑠1, 𝑠2) ∈ 𝑆;
• 𝜌(𝜖) = 1 and 𝜌(ℎ ⋅ 𝑠1) = 2 and 𝜌(ℎ ⋅ (𝑠1, 𝑠2)) = 1;
• 𝜋(𝜖, 𝑠1) = 𝑠1 and 𝜋(ℎ ⋅ 𝑠1, 𝑠2) = ℎ ⋅ (𝑠1, 𝑠2) and 𝜋(ℎ ⋅ (𝑠1, 𝑠2), 𝑠′1) = ℎ ⋅ (𝑠1, 𝑠2) ⋅ 𝑠′1;
• ℎ0 = 𝜖 and 𝑢𝑖((𝑠11 , 𝑠12)(𝑠21 , 𝑠22)⋯ (𝑠𝑇1 , 𝑠𝑇2 )) = ∑𝑇

𝑡=1 𝑢𝑖(𝑠𝑡1, 𝑠𝑡2)/𝑇 .
Now the collection of information sets is defined as follows: Let ℎ ∈ 𝐻1 be a node of player 1, then

• there is exactly one information set of player 1 containing ℎ as the only element,
• there is exactly one information set of player 2 containing all nodes of the form ℎ ⋅ 𝑠1 where 𝑠1 ∈ 𝑆1.

Tip

Intuitively, in every round, player 1 has complete information about the results of past plays, thus
player 1 chooses a pure strategy 𝑠1 ∈ 𝑆1, but player 2 is not informed about 𝑠1, but still has complete
information about results of all previous rounds. Hence player 2 chooses a pure strategy 𝑠2 and both
players are informed about the result.

8.1.2 Equilibria

Definition 8.3. A strategy profile 𝜏 = (𝜏1, 𝜏2) in a 𝑇 -stage game 𝐺𝑇 -rep is a Nash equilibrium if for every
𝑖 ∈ {1, 2} and every 𝜏 ′𝑖 we have

𝑢𝑖(𝜏1, 𝜏−𝑖) ≥ 𝑢𝑖(𝜏 ′𝑖 , 𝜏−𝑖).

To define a subgame-perfect equilibrium we use the following notation. Given a history ℎ = 𝑠1⋯ 𝑠𝑡 and
a strategy 𝜏𝑖 of player 𝑖, we define strategy 𝜏ℎ𝑖 in (𝑇 − 𝑡)-stage game based on 𝐺 by

𝜏ℎ𝑖 ( ̄𝑠1⋯ ̄𝑠 ̄𝑡) = 𝜏𝑖(
ℎ

⏞𝑠1⋯ 𝑠𝑡 ̄𝑠1⋯ ̄𝑠 ̄𝑡)

for every sequence ̄𝑠1⋯ ̄𝑠 ̄𝑡 (i.e. 𝜏ℎ𝑖 behaves as 𝜏𝑖 after ℎ).

Tip

This can be sort of interpreted as a closure (from functional programming languages terminology).

Definition 8.4. A strategy profile 𝜏 = (𝜏1, 𝜏2) in a 𝑇 -stage game 𝐺𝑇 -rep is a subgame-perfect Nash equi-
librium (SPE) is for every history ℎ the profile (𝜏ℎ1 , 𝜏ℎ2 ) is a Nash equilibrium in the (𝑇 − |ℎ|)-stage game
based on 𝐺.

Example 8.2. Consider now a 𝑇 -stage game based on the Prisoner’s dilemma:
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𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Surely, playing (𝐶, 𝐶) (the Nash equilibrium in the strategic-form game) for every 𝑡 ≤ 𝑇 gives us a SPE in
the 𝑇 -stage. But is this the only SPE in this game?

Theorem 8.1. Let 𝐺 be an arbitrary finite strategic-form game. If 𝐺 has a unique Nash equilibrium, then
playing this equilibrium every time is the unique SPE (but not necessarily a unique Nash equilibrium) in the
𝑇 -stage game based on 𝐺.

Proof. By backward induction, players have to play the Nash equilibrium in the last stage. As the behavior
in the last stage does not depend on the behavior in the (𝑇 − 1)-th stage, they have to play the NE also in
the (𝑇 − 1)-th stage. Then the same holds in the (𝑇 − 2)-th stage, etc.

8.1.2.1 Nash Equilibria

As Theorem 8.1 states, there is only one subgame-perfect equilibrium in a 𝑇 -stage game based on Pris-
oner’s dilemma, but what are other Nash equilibria (if there are any)?

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

To simplify our discussion, we use the following notation: 𝑋 − 𝑌𝑍 , where 𝑋, 𝑌 , 𝑍 ∈ {𝐶, 𝑆} denotes the
following strategy:

• in the first phase, play 𝑋 ;
• in the second phase, play 𝑌 if the opponent plays 𝐶 in the first phase, otherwise play 𝑍 .

It can be shown that there are 4 Nash equilibria, as there are exactly four profiles that lead to (𝐶, 𝐶)(𝐶, 𝐶)
history – in these profiles, each player plays either 𝐶 − 𝐶𝐶 or 𝐶 − 𝐶𝑆.
Now we shall turn our attention to the underlying strategic-form game for a moment. Here, the strategy
𝐶 strictly dominates 𝑆. But in the 2-stage game based on the Prisoner’s dilemma, if player 2 plays 𝑆 − 𝐶𝑆,
then the best responses of player 1 are 𝑆 −𝐶𝐶 and 𝑆 −𝐶𝑆. On the other hand, if player 2 plays 𝑆 −𝐶𝑆, then
the best responses are 𝐶 − 𝑆𝐶 and 𝐶 − 𝐶𝐶 , so there is no strictly dominant strategy for player 1 (which
would be among the best responses for all strategies of player 2).

Note

The strategy 𝑆 − 𝐶𝑆 is usually called “tit-for-tat”.
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8.1.2.2 Subgame-Perfect Equilibria

Let 𝑠 = (𝑠1, 𝑠2) be a Nash equilibrium in 𝐺. Define a strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺𝑇 -rep where

• 𝜏1 chooses 𝑠1 in every stage;
• 𝜏2 chooses 𝑠2 in every stage.

Lemma 8.1. Using 𝑠 and 𝜏 as we have defined above, 𝜏 is a subgame-perfect equilibrium in 𝐺𝑇 -rep for every
𝑇 ≥ 1.

Proof. Apparently, changing 𝜏𝑖 in some stage(s) may only result in the same or worse payoff for player 𝑖,
since the other player always plays 𝑠2 independent of the choices of player 1.

The Lemma 8.1 may be generalized by allowing players to play different equilibria in particular stages,
i.e., consider a sequence of Nash equilibria 𝑠1, 𝑠2, … , 𝑠𝑇 in 𝐺 and assume that in stage 𝑙 player 𝑖 plays 𝑠𝑙𝑖 .
But this still does not cover all possible subgame-perfect equilibria in finitely repeated games! Consider
the following game 𝐺:

𝑚 𝑓 𝑟
𝑀 (4, 4) (−1, 5) (0, 0)
𝐹 (5, −1) (1, 1) (0, 0)
𝑅 (0, 0) (0, 0) (3, 3)

The Nash equilibria in this strategic form game 𝐺 are (𝐹 , 𝑓 ) and (𝑅, 𝑟). Now consider a 2-stage game 𝐺2-rep
and strategies 𝜏1, 𝜏2 where

• 𝜏1: chooses 𝑀 in stage 1. In stage 2 plays 𝑅 if (𝑀, 𝑚) was played in the first stage, and plays 𝐹
otherwise;

• 𝜏2: chooses 𝑚 in stage 2. In stage 2 plays 𝑟 if (𝑀, 𝑚) was played in the first stage, and plays 𝑓
otherwise.

Although both players do not play Nash equilibrium in the first stage, it still is subgame-perfect equi-
librium. The idea is that both players agree to play a Pareto optimal profile. If both comply, then a
favorable Nash equilibrium is played in the second stage. If one of them betrays then a “punishing” Nash
equilibrium is played.
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8.2 Infinitely Repeated Games

Definition 8.5. Let 𝐺 = ({1, 2} , (𝑆1, 𝑆2), (𝑢1, 𝑢2)) be a finite strategic-form game of two players. An
infinitely-repeated game 𝐺irep based on 𝐺 proceeds in stages so that in each stage, say 𝑡 , players choose
a strategy profile 𝑠𝑡 = (𝑠𝑡1, 𝑠𝑡2).

Recall that a history of length 𝑡 ≥ 0 is a sequence ℎ = 𝑠1⋯ 𝑠𝑡 ∈ 𝑆 𝑡 of 𝑡 strategy profiles. Denote again by
𝐻(𝑡) the set of all histories of length 𝑡 .

Definition 8.6. A pure strategy for player 𝑖 in the infinitely repeated game 𝐺irep is a function

𝜏𝑖 ∶
∞
⋃
𝑡=0

𝐻(𝑡) → 𝑆𝑖,

which for every possible history chooses a next step for player 𝑖.

Every pure strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺irep induces a sequence of pure strategy profiles 𝑤𝜏 = 𝑠1𝑠2⋯
in 𝐺 so that 𝑠𝑡𝑖 = 𝜏𝑖(𝑠1⋯ 𝑠𝑡−1). Here for 𝑡 = 1 we have that 𝑠1⋯ 𝑠𝑡−1 = 𝜖, which again denotes the empty
history.

8.2.1 Discounted payoff

Let 𝜏 = (𝜏1, 𝜏2) be a pure strategy profile in 𝐺irep such that 𝑤𝜏 = 𝑠1𝑠2⋯

Definition 8.7. Given 0 < 𝛿 < 1, we define 𝛿-discounted payoff of player 𝑖 by

𝑢𝛿𝑖 (𝜏 ) = (1 − 𝛿)
∞
∑
𝑡=0

𝛿 𝑡 ⋅ 𝑢𝑖(𝑠𝑡+1).

Given a strategic-form game 𝐺 and 0 < 𝛿 < 1, we denote by 𝐺𝛿
irep the infinitely repeated game based on

𝐺 together with the 𝛿-discounted payoffs.

Definition 8.8. A strategy profile 𝜏 = (𝜏1, 𝜏2) is a Nash equilibrium in 𝐺𝛿
irep if for both 𝑖 ∈ {1, 2} and for

every 𝜏 ′𝑖 and every 𝜏−𝑖 we have that
𝑢𝛿𝑖 (𝜏𝑖, 𝜏−𝑖) ≥ 𝑢𝛿𝑖 (𝜏 ′𝑖 , 𝜏−𝑖).

Given a history ℎ = 𝑠1⋯ 𝑠𝑡 and a strategy 𝜏𝑖 of player 𝑖, we define a strategy 𝜏ℎ𝑖 in the infinitely repeated
game 𝐺irep by

𝜏ℎ𝑖 ( ̄𝑠1⋯ ̄𝑠 ̄𝑡) = 𝜏𝑖(𝑠1⋯ 𝑠𝑡 ̄𝑠1⋯ ̄𝑠 ̄𝑡)
for every sequence ̄𝑠1⋯ ̄𝑠 ̄𝑡 (i.e. 𝜏ℎ𝑖 behaves as 𝜏𝑖 after ℎ).

Definition 8.9. Now 𝜏 = (𝜏1, 𝜏2) is a subgame-perfect equilibrium in 𝐺𝛿
irep if for every history ℎ we have

that (𝜏ℎ1 , 𝜏ℎ2 ) is a Nash equilibrium.
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Note

Note that (𝜏ℎ1 , 𝜏ℎ2 )must be a NE also for all histories of ℎ that are not visited when the profile (𝜏1, 𝜏2)
is used.

Example 8.3. Consider the infinitely repeated game 𝐺irep based on the Prisoner’s dilemma:

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

Our goal now will to be calculate the Nash and subgame-perfect equilibria in 𝐺𝛿
irep for a given discount

𝛿 . Consider a pure strategy profile (𝜏1, 𝜏2) where 𝜏1(𝑠1⋯ 𝑠𝑇 ) = 𝐶 for all 𝑇 ≥ 1 and 𝑖 ∈ {1, 2}. Just as
this was a subgame-perfect equilibrium in the finitely repeated Prisoner’s dilemma, it stays a SPE in the
infinitely repeated Prisoner’s dilemma too (as it maximizes the payoff of each stage separately – as if it
was a one-shot game).

8.2.2 Grim Trigger and Simple Folk Theorem

Now consider the infinitely repeated Prisoner’s dilemma from Example 8.3 and the grim trigger profile
𝜏 = (𝜏1, 𝜏2) where

𝜏𝑖(𝑠1⋯ 𝑠𝑇 ) =
⎧
⎨
⎩

𝑆, 𝑇 = 0,
𝑆, 𝑠𝑙 = (𝑆, 𝑆) ∀𝑙 ∈ {1, … , 𝑇 } ,
𝐶, otherwise.

Notice that (𝑆, 𝑆) provides better payoffs than NE in 𝐺 in each stage of 𝐺irep. Thus it seems logical to
remain silent as long, as the other player cooperates, but then keep confessing if he ever betrays us.
Suppose that player 𝑖 starts with this strategy and considers deviating in stage 𝑘 to receive a payoff of
0 instead of −1. Thereafter, his opponent chooses 𝐶 , and so he will also choose 𝐶 in the remainder of
the game. The use of the grim trigger strategies therefore defines a Nash equilibrium iff the equilibrium
payoff of −1 is at least as large as the payoff from deviating to 𝐶 in stage 𝑘 and ever after (deviation to 𝑆
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from 𝐶 is surely suboptimal) 1:

(1 − 𝛿)
∞
∑
𝑡=0

𝛿 𝑡(−1) ≥ (1 − 𝛿) (
𝑘−1
∑
𝑡=0

𝛿 𝑡(−1) + 𝛿𝑘 ⋅ 0⏟
0

+
∞
∑
𝑡=𝑘+1

𝛿 𝑡(−5))

∞
∑
𝑡=0

𝛿 𝑡(−1) ≥
𝑘−1
∑
𝑡=0

𝛿 𝑡(−1) +
∞
∑
𝑡=𝑘+1

𝛿 𝑡(−5)

∞
∑
𝑡=𝑘

𝛿 𝑡(−1) ≥
∞
∑
𝑡=𝑘+1

𝛿 𝑡(−5)

⟺
∞
∑
𝑡=0

𝛿 𝑡(−1) ≥
∞
∑
𝑡=1

𝛿 𝑡(−5)

−1
1 − 𝛿 ≥ 5 +

∞
∑
𝑡=0

𝛿 𝑡(−5) = 5 + −5
1 − 𝛿

4
1 − 𝛿 ≥ 5

𝛿 ≥ 1
5 .

In general, let 𝐺 = ({1, 2} , (𝑆1, 𝑆2), (𝑢1, 𝑢2)) be two-player strategic form game where 𝑢1, 𝑢2 are bounded
on 𝑆 = 𝑆1 × 𝑆2 (but 𝑆 may be infinite) and let 𝑠∗ be a Nash equilibrium in 𝐺. Let 𝑠 be a strategy profile in 𝐺
satisfying 𝑢𝑖(𝑠) > 𝑢𝑖(𝑠∗) for all 𝑖 ∈ 𝑁 . Consider the following grim trigger for 𝑠 using 𝑠∗ strategy profile
𝜏 = (𝜏1, 𝜏2) in 𝐺irep where

𝜏𝑖(𝑠1⋯ 𝑠𝑇 ) =
⎧
⎨
⎩

𝑠𝑖, 𝑇 = 0,
𝑠𝑖, 𝑠𝑙 = 𝑠 ∀𝑙 ∈ {1, … , 𝑇 } ,
𝑠∗𝑖 , otherwise.

Then for

𝛿 ≥ max
𝑖∈{1,2}

max𝑠′𝑖 ∈𝑆𝑖 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑢𝑖(𝑠)
max𝑠′𝑖 ∈𝑆𝑖 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑢𝑖(𝑠∗)

we have that (𝜏1, 𝜏2) is a subgame-perfect equilibrium in 𝐺𝛿
irep and 𝑢𝛿𝑖 (𝜏 ) = 𝑢𝑖(𝑠).

8.2.2.1 Examples

Example 8.4. Consider the infinitely repeated game 𝐺irep based on the following game 𝐺:

𝑚 𝑓 𝑟
𝑀 (4, 4) (−1, 5) (3, 0)

1Mostly adapted from this document.
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𝑚 𝑓 𝑟
𝐹 (5, −1) (1, 1) (0, 0)
𝑅 (0, 3) (0, 0) (2, 2)

There is one Nash equilibrium in 𝐺, that is (𝐹 , 𝑓 ). Consider the grim trigger for (𝑀, 𝑚) using (𝐹 , 𝑓 ), i.e.,
the profile 𝜏 = (𝜏1, 𝜏2) in 𝐺irep where

• 𝜏1: plays𝑀 in a given stage if (𝑀, 𝑚)was played so far in all previous stages, and plays 𝐹 otherwise;
• 𝜏2: plays 𝑚 in a given stage if (𝑀, 𝑚)was played so far in all previous stages, and plays 𝑓 otherwise;

Then this strategy profile 𝜏 is a subgame-perfect equilibrium in 𝐺irep for all 𝛿 ≥ 1
4 . Also, 𝑢𝑖(𝜏 ) = 4 for all

𝑖 ∈ {1, 2}. There is also a grim trigger for (𝑅, 𝑟) using (𝐹 , 𝑓 ), which is a SPE in 𝐺irep for 𝛿 ≥ 1
2 .

Example 8.5 (Tacit Collusion). Consider the Cournot duopoly, see Section 3.3.3, game model 𝐺 =
(𝑁 , (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 )

• 𝑁 = {1, 2};
• 𝑆𝑖 = [0, 𝜅];
• 𝑢1(𝑞1, 𝑞2) = 𝑞1(𝜅 − 𝑞 − 1 − 𝑞2) − 𝑞1𝑐1 = (𝜅 − 𝑐1)𝑞1 − 𝑞21 − 𝑞1𝑞2 and
𝑢2(𝑞1, 𝑞2) = 𝑞2(𝜅 − 𝑞 − 1 − 𝑞2) − 𝑞2𝑐2 = (𝜅 − 𝑐2)𝑞2 − 𝑞22 − 𝑞1𝑞2.

For simplicity we assume that 𝑐1 = 𝑐2 = 𝑐 and denote 𝜃 = 𝜅 − 𝑐.
If the firms sign a binding contract to produce only 𝜃/4, their profit would be 𝜃2/8 which is higher than
the profit 𝜃2/9 for playing the Nash equilibrium (𝜃/3, 𝜃/3) in 𝐺. However, such contracts are forbidden
in many countries (including US). Is then still possible that the firms will behave selfishly (i.e. only maxi-
mizing their profits) and still obtain such payoffs? In other words, is there a SPE in the infinitely repeated
game based on 𝐺 (with a discount factor 𝛿) which gives the payoffs 𝜃2/8?
Consider the grim trigger profile for (𝜃/4, 𝜃/4) using (𝜃/3, 𝜃/3) Nash equilibrium. Then player 𝑖 will

• produce 𝑞𝑖 = 𝜃/4 whenever all profiles in history are (𝜃/4, 𝜃/4);
• whenever one of the players deviates, produce 𝜃/3 from that moment on.

Assume that 𝜅 = 100 and 𝑐 = 10 (which gives 𝜃 = 90), this is a SPE in 𝐺irep for 𝛿 ≥ 0.5294⋯ and it results
in (𝜃/4, 𝜃/4)(𝜃/4, 𝜃/4)⋯ with discounted payffos 𝜃2/8.

8.3 Long-Run Average Payoff

Important

In this section, we assume that all payoffs in the game 𝐺 are positive and that 𝑆 is finite!

Let 𝜏 = (𝜏1, 𝜏2) be a strategy profile in the infinitely repeated game 𝐺irep such that 𝑤𝜏 = 𝑠1𝑠2⋯
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Definition 8.10. We define a long-run average payoff for player 𝑖 by

𝑢avg𝑖 (𝜏 ) = lim sup
𝑇→∞

1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖(𝑠𝑡).

The long-run average payoff 𝑢avg𝑖 (𝜏 ) is well-defined if the limit 𝑢avg𝑖 (𝜏 ) = lim𝑇→∞ 1
𝑇 ∑𝑇

𝑡=1 𝑢𝑖(𝑠𝑡) exists.

Caution

Here, lim sup is necessary in general, because 𝜏𝑖 may cause non-existence in the limit (but in ℝ with
the usual choice of metrics, we can always select a convergent subsequence).

Given a strategic-form game 𝐺, we denote by 𝐺avg
irep the infinitely repeated game based on 𝐺 together with

the long-run average payoff.

Definition 8.11. A strategy profile 𝜏 is a Nash equilibrium if 𝑢avg𝑖 (𝜏 ) is well-defined for all 𝑖 ∈ 𝑁 , and for
every 𝑖 and every 𝜏 ′𝑖 we have that

𝑢avg𝑖 (𝜏𝑖, 𝜏−𝑖) ≥ 𝑢avg𝑖 (𝜏 ′𝑖 , 𝜏−𝑖).

Note

Note that we demand the existence of the defining limit of 𝑢avg𝑖 (𝜏𝑖, 𝜏−𝑖) but the limit does not have
to exist for 𝑢avg𝑖 (𝜏 ′𝑖 , 𝜏−𝑖).

Moreover, 𝜏 = (𝜏1, 𝜏2) is a subgame-perfect equilibrium in 𝐺avg
irep if for every history ℎ that (𝜏ℎ1 , 𝜏ℎ2 ) is a Nash

equilibrium.

Example 8.6. Consider the infinitely repeated game based on the Prisoner’s dilemma with long-run
average payoff:

𝐶 𝑆
𝐶 (−5, −5) (0, −20)
𝑆 (−20, 0) (−1, −1)

The grim trigger profile 𝜏 = (𝜏1, 𝜏2) where

𝜏𝑖(𝑠1⋯ 𝑠𝑇 ) =
⎧
⎨
⎩

𝑆, 𝑇 = 0,
𝑆, 𝑠𝑙 = (𝑆, 𝑆) ∀𝑙 ∈ {1, … , 𝑇 } ,
𝐶, otherwise.

is a SPE that gives the long-run average payoff −1 to each player.
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The intuition behind the grim trigger works just like for the discounted payoff – whenever a player 𝑖
deviates, the player −𝑖 starts playing 𝐶 for which the best response of player 𝑖 is also 𝐶 . So we obtain
(𝑆, 𝑆)⋯ (𝑆, 𝑆)(𝑋 , 𝑌 )(𝐶, 𝐶)(𝐶, 𝐶)⋯ (here (𝑋 , 𝑌 ) is either (𝐶, 𝑆) or (𝑆, 𝐶) depending on who deviates). Appar-
ently, the long-run average payoff is −5 for both players, which is worse than −1.
However, other payoffs can be supported by Nash equilibrium. Consider e.g. a strategy profile 𝜏 = (𝜏1, 𝜏2)
such that

• both players cyclically play as follows:

– 9 times (𝑆, 𝑆);
– once (𝑆, 𝐶);

• if one of the players deviates, then, from that moment on, both play (𝐶, 𝐶) forever.
Then 𝜏 = (𝜏1, 𝜏2) is also a SPE. Apparently, 𝑢avg1 (𝜏 ) = 9

10 (−1)+
−20
10 = −29

10 and 𝑢avg2 (𝜏 ) = 9
10 (−1)+ 0 = − 9

10 .
Hence player 2 gets a better payoff than from the “best” profile (𝑆, 𝑆).

8.4 Folk Theorems

The previous examples suggest that other (possibly all?) convex combinations of payoffs may be obtained
by means of Nash equilibria. This observation forms a basis for a bunch of theorems, collectively referred
to as Folk Theorems.

Note

No author is listed since these theorems had been known in the games community long before they
were formalized.

In this section, we prove several versions of Folk Theorem concerning achievable payoffs for repeated
games. We consider the following variants:

• Long-run average payoffs and SPE;
• Long-run average payoffs and Nash equilibria.

Tip

Similar theorems can also be proven for the discounted payoff.

8.4.1 Feasible Payoffs

Definition 8.12. We say that a vector of payoffs 𝑣 = (𝑣1, 𝑣2) ∈ ℝ2 is feasible if it is a convex combination
of payoffs for pure strategy profiles in 𝐺 with rational coefficients, i.e. if there are rational numbers 𝛽𝑠 ,
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here 𝑠 ∈ 𝑆, satisfying 𝛽𝑠 ≥ 0 and ∑𝑠∈𝑆 𝛽𝑠 = 1 such that for both 𝑖 ∈ {1, 2} holds

𝑣𝑖 = ∑
𝑠∈𝑆

𝛽𝑠 ⋅ 𝑢𝑖(𝑠).

We assume that there is 𝑚 ∈ ℕ such that each 𝛽𝑠 can be written in the form 𝛽𝑠 = 𝛾𝑠/𝑚.

The following theorems can be extended to a notion of feasible payoffs using arbitrary, possibly irrational,
coefficients 𝛽𝑠 in the convex combination. Roughly speaking, this follows from the fact that each real
number can be approximated with rational numbers up to an arbitrary error. However, the proofs are
technically more involved.

Theorem 8.2. Let 𝑠∗ be a pure strategy Nash equilibrium in 𝐺 and let 𝑣 = (𝑣1, 𝑣2) be a feasible vector of
payoffs satisfying 𝑣𝑖 ≥ 𝑢𝑖(𝑠∗) for both 𝑖 ∈ {1, 2}. Then there is a strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺irep such that

• 𝜏 is a subgame-perfect equilibrium in 𝐺avg
irep;

• 𝑢avg𝑖 (𝜏 ) = 𝑣𝑖 for 𝑖 ∈ {1, 2}.

Proof. Consider a strategy profile 𝜏 in 𝐺irep which gives the following behavior:

1. unless one of the players deviates, the players play cyclically all profiles 𝑠 ∈ 𝑆 so that each 𝑠 is
always played for 𝛾𝑠 rounds;

2. whenever one of the players deviates, then, from that moment on, each player 𝑖 plays 𝑠∗𝑖 .
Trivially, 𝑢avg(𝜏 ) = 𝑣 . We shall now verify that 𝜏 is a subgame-perfect equilibrium. Consider a fixed
history ℎ, we show that 𝜏ℎ = (𝜏ℎ1 , 𝜏ℎ2 ) is a Nash equilibrium in 𝐺avg

irep.

• If ℎ does not contain deviation from the cyclic behavior (1.), then 𝜏ℎ continues according to (1.),
thus 𝑢avg𝑖 (𝜏ℎ) = 𝑣𝑖.

• If ℎ contains a deviation from (1.), then

𝑤𝜏ℎ = 𝑠∗𝑠∗⋯

and thus 𝑢avg𝑖 (𝜏ℎ) = 𝑢𝑖(𝑠∗).
• Now if a player 𝑖 deviates from 𝜏ℎ𝑖 to ̄𝜏ℎ𝑖 in 𝐺avg

irep, then

𝑤( ̄𝜏ℎ𝑖 ,𝜏ℎ−𝑖) = 𝛼(𝑠1𝑖 , 𝑠′−𝑖)(𝑠2𝑖 , 𝑠∗−𝑖)(𝑠3𝑖 , 𝑠∗−𝑖)⋯

where 𝛼 is a sequence of profiles following the cyclic behavior (1.), 𝑠1𝑖 , 𝑠2𝑖 , … are strategies of 𝑆𝑖 and
𝑠′−𝑖 is a strategy of 𝑆−𝑖. However, then 𝑢avg𝑖 ( ̄𝜏ℎ𝑖 , 𝜏ℎ−𝑖) ≤ 𝑢𝑖(𝑠∗) ≤ 𝑣𝑖 since 𝑠∗ is a Nash equilibrium and
thus 𝑢𝑖(𝑠𝑘𝑖 , 𝑠∗−𝑖) ≤ 𝑢𝑖(𝑠∗) for all 𝑘 ≥ 1.
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Note

Intuitively said, player −𝑖 punishes player 𝑖 by playing 𝑠∗−𝑖.

8.4.2 Individual Rationality

Definition 8.13. A tuple 𝑣 = (𝑣1, 𝑣2) ∈ ℝ2 is individually rational if for both 𝑖 ∈ {1, 2} holds

𝑣𝑖 ≥ min𝑠−𝑖∈𝑆−𝑖
max𝑠𝑖∈𝑆𝑖

𝑢𝑖(𝑠𝑖, 𝑠−𝑖).

That is, 𝑣𝑖 is least as large as the value that player 𝑖 may secure by playing best responses to the most
hostile behavior of player −𝑖.

Tip

Note that here, player −𝑖 chooses his “most hostile behavior” before player 𝑖, who then reacts to it
maximizing his payoff in this unfavorable situation, i.e. he minimizes the harm done by player −𝑖
to him. Hence player −𝑖 is able to hurt player 𝑖 less than if the order of maximization/minimization
was the other way around.

Example 8.7. Consider a game given by the following table:

𝐿 𝑅
𝑈 (−2, 2) (1, −2)
𝑀 (1, −2) (−2, 2)
𝐷 (0, 1) (2, 3)

Here any 𝑣 = (𝑣1, 𝑣2) such that 𝑣1 ≥ 1 and 𝑣2 ≥ 2 is individually rational.

Theorem 8.3. Let 𝑣 = (𝑣1, 𝑣2) be a feasible and individually rational vector of payoffs. Then there is a
strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺irep such that

• 𝜏 is a Nash equilibrium in 𝐺avg
irep;

• 𝑢avg(𝜏 ) = 𝑣 .

Proof. We will use a slightly modified strategy profile 𝜏 = (𝜏1, 𝜏2) in 𝐺irep from the proof of Theorem 8.2:

• unless one of the players deviates, the players play cyclically all profiles 𝑠 ∈ 𝑆 so that each 𝑠 is
always played for 𝛾𝑠 rounds;

• whenever a player 𝑖 deviates, the opponent−𝑖 starts playing a strategy 𝑠min−𝑖 ∈ argmin𝑠−𝑖∈𝑆−𝑖 max𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖, 𝑠−𝑖).
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It is trivial to see that 𝑢avg(𝜏 ) = 𝑣 . Now if a player 𝑖 deviates, then his long-run average payoff cannot be
higher than min𝑠−𝑖∈𝑆−𝑖 max𝑠𝑖∈𝑆𝑖 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≤ 𝑣𝑖, so 𝜏 is a Nash equilibrium.

Theorem 8.4. If a strategy profile 𝜏 = (𝜏1, 𝜏2) is a Nash equilibrium in 𝐺avg
irep, then (𝑢avg1 (𝜏 ), 𝑢avg2 (𝜏 )) is

individually rational.

Proof. Suppose that (𝑢avg1 (𝜏 ), 𝑢avg2 (𝜏 )) is not individually rational. Without loss of generality, assume that
𝑢avg1 (𝜏 ) < min𝑠2∈𝑆2 max𝑠1∈𝑆1 𝑢1(𝑠1, 𝑠2). Now let us consider a new strategy ̄𝜏1 such that for every history ℎ
the pure strategy ̄𝜏1(ℎ) is a best response to 𝜏2(ℎ). But then, for every history ℎ, we have

𝑢1( ̄𝜏1(ℎ), 𝜏2(ℎ)) ≥ min𝑠2∈𝑆2
max𝑠1∈𝑆1

𝑢1(𝑠1, 𝑠2) > 𝑢avg1 (𝜏 ).

So clearly 𝑢avg1 ( ̄𝜏1, 𝜏2) > 𝑢avg1 (𝜏 ) which contradicts the fact that 𝜏 = (𝜏1, 𝜏2) is a Nash equilibrium.

Note that if irrational convex combinations are allowed in the definition of feasibility, see Definition 8.12,
then vectors of payoffs for Nash equilibria in 𝐺avg

irep are exactly feasible and individually rational vectors
of payoffs. Indeed, the coefficients 𝛽𝑠 in the definition of feasibility are exactly frequencies with which
the individual profiles of 𝑆 are played in the Nash equilibria.

8.4.3 Summary

We have proven that “any reasonable” (i.e. feasible and individually rational) vector of payoffs can be
justified as payoffs for a Nash equilibrium in 𝐺avg

irep (where the future has “an infinite weight”). Concern-
ing subgame-perfect equilibria, we have proven that any feasible vector of payoffs dominating a Nash
equilibrium in 𝐺 can be justified as payoffs for subgame-perfect equilibrium in 𝐺avg

irep.

Note

This result can be generalized to arbitrary feasible and strictly individually rational payoffs bymeans
of a more demanding construction.

For discounted payoffs, one can prove that an arbitrary feasible vector of payoffs dominating a Nash
equilibrium in 𝐺 can be approximated using payoffs for subgame-perfect equilibrium in 𝐺𝛿

irep as 𝛿 goes to
1, and even this result can be extended to feasible and strictly individually rational payoffs.

Tip

For a very detailed discussion of Folk Theorems see “A Course in Game Theory” by M. J. Osborne
and A. Rubinstein.
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8.5 Summary of Extensive-Form Games

We have considered extensive-form games (i.e., games on trees)

• with perfect information;
• with imperfect information.

We have considered pure strategies, mixed and behavioral strategies (see Kuhn’s Theorem 7.1). We have
also studied Nash equilibria and subgame-perfect equilibria in pure strategies.

For finite perfect-information games, we have shown that

• there always exists a pure strategy SPE;
• SPE can be computed using backward induction in polynomial time.

On the other hand, for imperfect information games, the following holds:

• the backward induction can be used to propagate values through “perfect information nodes”, but
“imperfect information parts” have to be solved by different means;

• solving imperfect information games is at least as hard as solving games in strategic form; however,
even in the zero-sum case, most decision problems are NP-hard.

Finally, we discussed repeated games. We considered both, finitely as well as infinitely repeated games.
For finitely repeated games we considered the average payoff and discussed the existence of pure strat-
egy Nash and subgame-perfect equilibria with respect to the existence of Nash equilibria in the original
strategic-form game.

For infinitely repeated games we considered both

• discounted payoff: we have formulated and applied a simple folk theorem: “grim trigger” strategy
profiles can be used to implement any vector of payoffs strictly dominating payoffs for a Nash
equilibrium in the original strategic-form game;

• long-run average payoff: we have proven that all feasible and individually rational vectors of
payoffs can be achieved by Nash equilibria (a variant of the grim trigger).
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9 Games of Incomplete Information

9.1 Auctions

Let us consider the (general) problem: How to allocate (discrete) resources among selfish agents in a
multi-agent system?

Auctions provide a general solution to this problem. As such, auctions have been heavily used in real
life, in consumer, corporate as well as government settings:

• eBay, art auctions, wine auctions, etc.
• advertising (Google adWords)
• governments selling public resources: electromagnetic spectrum, oil leases, etc.
• …

Auctions also provide a theoretical framework for understanding resource allocation problems among
self-interested agents. Formally, an auction is any protocol that allows agents to indicate their interest in
one or more resources and that uses these indications to determine the resource allocation and payments
of the agents.

Auctions may be used in various settings depending on the complexity of the resource allocation prob-
lem:

• Single-item auctions: Here 𝑛 bidders (players) compete for a single indivisible item that can be
allocated to just one of them. Each bidder has his own private value of the item in case he wins
(gets zero if he loses). Typically (but not always) the highest bid wins. How much should he pay?

• Multiunit auctions: Here a fixed number of identical units of a homogenous commodity are sold.
Each bidder submits both a number of units he demands and a unit price he is willing to pay. Here
also the highest bidders typically win, but it is unclear how much should they pay (pay-as-bid vs
uniform pricing).

• Combinatorial auctions: Here bidders compete for a set of distinct goods. Each player has a valu-
ation function that assigns values to subsets of the set (some goods are useful only in groups etc.).
Who wins and what he pays?

Tip

We shall mostly concentrate on single-item auctions.
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9.1.1 Single-Item Auctions

There are many single-item auctions, but we consider the following well-known versions:

• open auctions:

– The English Auction: Often occurs in movies; bidders are sitting in a room (by computer or
a phone) and the price of the item goes up as long as someone is willing to bid it higher. Once
the last increase is no longer challenged, the last bidder to increase the price wins the auction
and pays the price for the item.

– The Dutch Auction: Opposite of the English auction; here, the price starts at a prohibitively
high value and the auctioneer gradually drops the price. Once a bidder shouts “buy”, the
auction ends and the bidder gets the item at the price.

• sealed-bid auctions:

– 𝑘-th price Sealed-Bid Auction: Each bidder writes down his bid and places it in an envelope;
the envelopes are opened simultaneously. The highest bidder wins and then pays the 𝑘-th
maximum bid. (In reverse auction it is the 𝑘-th minimum). The most prominent special
cases are The First-Price Auction and The Second-Price Auction.

Observe that

• the English auction is essentially equivalent to the second price auction if the increments in every
round are very small.

Note

There exists a “continuous” version, called the Japanese auction, where the price continuously in-
creases. Each bidder may drop out at any time. The last one who stays gets the item for the current
price (which is the dropping price of the “second highest bid”).

• similarly, the Dutch auction is equivalent to the first price auction. Note that the bidder with the
highest bid stops the decrement of the price and buys at the current price which corresponds to his
bid.

But now the question arises, which auction (and if any) is better? The goal of the bidder is clear – to get
the item at as low a price as possible (i.e. they maximize the difference between their private value and
the price they pay). We consider only self-interested non-communicating bidders, that are rational and
intelligent. There are also at least two goals that may be pursued by the auctioneer (in various settings):

• revenue maximization;
• incentive compatibility: we want the bidder to spontaneously bid their true value of the item.
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Tip

The incentive compatibility objective means that we do not want it to be possible to strategically
manipulate the auction by lying.

9.1.2 Auctions as Games

Consider single-item sealed-bid auctions as strategic-form games: Let 𝐺 = (𝑁 , (𝐵𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ) be a
strategic-form game where

• the set of players 𝑁 is the set of bidders;
• 𝐵𝑖 = [0,∞) where each 𝑏𝑖 ∈ 𝐵𝑖 corresponds to the bid 𝑏𝑖 (we follow the standard notation and use 𝑏𝑖
to denote pure strategies (bids)).

• to define 𝑢𝑖, we assume that each bidder has his own private value 𝑣𝑖 of the item, then given bids
𝑏 = (𝑏1, … , 𝑏𝑛):

– First Price:

𝑢𝑖(𝑏) = {𝑣𝑖 − 𝑏𝑖, 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise;

– Second Price:

𝑢𝑖(𝑏) = {𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 , 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise.

Is this model realistic? Not really – usually, the bidders are not perfectly informed about the private
values of the other bidders.

Tip

Although imperfect-information extensive-form games would solve this issue, the construction
would be awkward, to say the least (and would miss the point of the problem).

9.2 Incomplete-Information Games

Definition 9.1. A (strict) incomplete information game is a tuple 𝐺 = (𝑁 , (𝐴𝑖)𝑖∈𝑁 , (𝑇𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 )
where

• 𝑁 = {1, … , 𝑛} is a set of players;
• each 𝐴𝑖 is a set of actions available to player 𝑖; we denote by 𝐴 = ∏𝑛

𝑖=1 𝐴𝑖 the set of all possible
action profiles 𝑎 = (𝑎1, … , 𝑎𝑛);

• each 𝑇𝑖 is the set of all possible types of player 𝑖 and we denote by 𝑇 = ∏𝑛
𝑖=1 𝑇𝑖 the set of all possible

type profiles 𝑡 = (𝑡1, … , 𝑡𝑛);
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• 𝑢𝑖 is a type-dependent payoff function

𝑢𝑖 ∶ 𝐴1 × ⋯ × 𝐴𝑛 × 𝑇𝑖 → ℝ;
given a profile of actions 𝑎 = (𝑎1, … , 𝑎𝑛) and a type 𝑡𝑖 ∈ 𝑇𝑖, we write 𝑢𝑖(𝑎; 𝑡𝑖) = 𝑢𝑖(𝑎1, … , 𝑎𝑛; 𝑡𝑖) to
denote the corresponding payoff.

A pure strategy of player 𝑖 is a function 𝑠𝑖 ∶ 𝑇𝑖 → 𝐴𝑖. As before, we denote by 𝑆𝑖 the set of all pure
strategies of player 𝑖, and by 𝑆 the set of all pure strategy profiles 𝑆 = ∏𝑛

𝑖=1 𝑆𝑖.

9.2.1 Dominance

Definition 9.2. A pure strategy 𝑠𝑖 very weakly dominates 𝑠′𝑖 if for every 𝑡𝑖 ∈ 𝑇𝑖 the following holds: For
all 𝑎−𝑖 ∈ 𝐴−𝑖 we have that

𝑢𝑖(𝑠𝑖(𝑡𝑖), 𝑎−𝑖; 𝑡𝑖) ≥ 𝑢𝑖(𝑠′𝑖 (𝑡𝑖), 𝑎−𝑖; 𝑡𝑖).

Definition 9.3. A pure strategy 𝑠𝑖 weakly dominates 𝑠′𝑖 if for every 𝑡𝑖 ∈ 𝑇𝑖 the following holds: For all
𝑎−𝑖 ∈ 𝐴−𝑖 we have that

𝑢𝑖(𝑠𝑖(𝑡𝑖), 𝑎−𝑖; 𝑡𝑖) ≥ 𝑢𝑖(𝑠′𝑖 (𝑡𝑖), 𝑎−𝑖; 𝑡𝑖)
and the inequality is strict for at least one 𝑎−𝑖.

Tip

Such 𝑎−𝑖 satisfying the strict inequality may be different for different types 𝑡𝑖.

Definition 9.4. A pure strategy 𝑠𝑖 strictly dominates 𝑠′𝑖 if for every 𝑡𝑖 ∈ 𝑇𝑖 the following holds: For all
𝑎−𝑖 ∈ 𝐴−𝑖 we have that

𝑢𝑖(𝑠𝑖(𝑡𝑖), 𝑎−𝑖; 𝑡𝑖) > 𝑢𝑖(𝑠′𝑖 (𝑡𝑖), 𝑎−𝑖; 𝑡𝑖).

Definition 9.5. A pure strategy 𝑠𝑖 is (very weakly, weakly, strictly) dominant if it (very weakly,
weakly, strictly) dominates all other pure strategies 𝑠′𝑖 ∈ 𝑆𝑖.

In order to generalize Nash equilibria to incomplete-information games, we use the following notation:
Given a pure strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 and a profile of types 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇 , for every player 𝑖
we write

𝑠−𝑖(𝑡−𝑖) = (𝑠1(𝑡1), … , 𝑠𝑖−1(𝑡𝑖−1), 𝑠𝑖+1(𝑡𝑖+1), … , 𝑠𝑛(𝑡𝑛)).

Definition 9.6 (Ex-post Nash equilibirium1). A strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) is an ex-post Nash equi-
librium if no player can increase their ex-post expected utility 𝑢𝑖(𝑠𝑖, 𝑠−𝑖; 𝑡𝑖, 𝑡−𝑖) by unilaterally changing
their strategy, i.e. for every player 𝑖 and every type profile 𝑡 ∈ 𝑇 and every strategy 𝑠′𝑖 ∈ 𝑆𝑖 of player 𝑖 it
holds that

𝑢𝑖(𝑠; 𝑡) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖; 𝑡).

Note that in the ex-post expected utility, player 𝑖 knows types of other players!

1The definition, and much more, can be found in this awesome document by prof. Greenwald.

91

https://cs.brown.edu/courses/cs1951k/lectures/2020/bayesian_games.pdf


Warning

In the lectures, it was defined as follows:
A strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) is an ex-post Nash equilibrium if for every type profile 𝑡 =
(𝑡1, … , 𝑡𝑛) ∈ 𝑇 , we have that 𝑠(𝑡) = (𝑠1(𝑡1), … , 𝑠𝑛(𝑡𝑛)) is a Nash equilibrium in the strategic form game
defined by the 𝑡𝑖’s.
Formally, 𝑠 = (𝑠1, … , 𝑠𝑛) is an ex-post Nash equilibrium if for all 𝑖 ∈ 𝑁 and all 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇
and all 𝑎𝑖 ∈ 𝐴𝑖 the following holds

𝑢𝑖(𝑠(𝑡); 𝑡𝑖) ≥ 𝑢𝑖(𝑎𝑖, 𝑠−𝑖(𝑡−𝑖); 𝑡𝑖).

Example 9.1. Consider single-item sealed-bid auctions as strict incomplete-information games: 𝐺 =
(𝑁 , (𝐵𝑖)𝑖∈𝑁 , (𝑉𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 ) where

• the set of players 𝑁 is the set of bidders;
• 𝐵𝑖 = [0,∞) where each action 𝑏𝑖 ∈ 𝐵𝑖 corresponds to the bid 𝑏𝑖;
• 𝑉𝑖 = [0,∞) where each type 𝑣𝑖 ∈ 𝑉𝑖 corresponds to the private value 𝑣𝑖;
• let 𝑣𝑖 ∈ 𝑉𝑖 be the type of player 𝑖 (i.e. his private value), then given an action profile 𝑏 = (𝑏1, … , 𝑏𝑛)
(i.e. bids) we define

– First Price

𝑢𝑖(𝑏; 𝑣𝑖) = {𝑣𝑖 − 𝑏𝑖, 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise,

– Second Price

𝑢𝑖(𝑏; 𝑣𝑖) = {𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 , 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise.

Are there dominant strategies? Are there ex-post-Nash equilibria?

Note

Note that when there is a tie (i.e. there are 𝑘 ≠ 𝑙 such that 𝑏𝑙 = 𝑏𝑘 = max𝑗 𝑏𝑗 ), then all players get 0.

9.2.2 Second-Price Auction

For every 𝑖, we denote by 𝑣𝑖 the pure strategy 𝑠𝑖 for player 𝑖 defined by 𝑠𝑖(𝑣𝑖) = 𝑣𝑖.

Tip

Intuitively, such a strategy is truth-telling, which means that the player bids his own private value
truthfully.
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Theorem 9.1. Assume Second-Price Auction. Then for every player 𝑖 we have that 𝑣𝑖 is a weakly dominant
strategy. So 𝑣 is also an ex-post Nash equilibrium.

Proof. Let us fix the private value 𝑣𝑖 and the bid 𝑏𝑖 ∈ 𝐵𝑖 of player 𝑖 such 𝑏𝑖 ≠ 𝑣𝑖. We show that for all bids
of opponents 𝑏−𝑖 ∈ 𝐵−𝑖:

𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖) ≥ 𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖)
with the strict inequality for at least one 𝑏−𝑖. Intuitively, assume that player 𝑖 bids 𝑏𝑖 against 𝑏−𝑖 of his
opponents and compares his payoff with the payoff he obtains by playing 𝑣𝑖 against 𝑏−𝑖.
There are two cases to consider; 𝑏𝑖 < 𝑣𝑖 and 𝑏𝑖 > 𝑣𝑖:

• Case 𝑏𝑖 < 𝑣𝑖: We distinguish three cases depending on 𝑏−𝑖
1. If 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 , then

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

intuitively, player 𝑖 wins and pays the price max𝑗≠𝑖 𝑏𝑗 < 𝑏𝑖; however, then bidding 𝑣𝑖 > 𝑏𝑖,
player 𝑖 still wins and pays max𝑗≠𝑖 𝑏𝑗 as well;

2. If there is 𝑘 ≠ 𝑖 such that 𝑏𝑘 > max𝑗≠𝑘 𝑏𝑗 , then

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 0 ≤ 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

moreover, if 𝑏𝑖 < 𝑏𝑘 < 𝑣𝑖, then we get a strict inequality (required by Definition 9.3)

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 0 < 𝑣𝑖 − 𝑏𝑘 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

intuitively, if another player 𝑘 wins, then player 𝑖 gets 0 and increasing 𝑏𝑖 to 𝑣𝑖 surely does not
hurt. Moreover, if 𝑏𝑖 < 𝑏𝑘 < 𝑣𝑖, then increasing 𝑏𝑖 to 𝑣𝑖 strictly increases the payoff of player 𝑖;

3. If there are 𝑘 ≠ 𝑙 such that 𝑏𝑘 = 𝑏𝑙 = max𝑗 𝑏𝑗 , then

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 0 ≤ 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

intuitively, there is a tie in (𝑏𝑖, 𝑏−𝑖) and all players get 0.

• Case 𝑏𝑖 > 𝑣𝑖: We distinguish four sub-cases depending on 𝑏−𝑖
1. If 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 > 𝑣𝑖, then

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 < 0 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖),

so in this case, the inequality is strict;
2. If 𝑏𝑖 > 𝑣𝑖 ≥ max𝑗≠𝑖 𝑏𝑗 , then

𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

note that this case also covers 𝑣𝑖 = max𝑗≠𝑖 𝑏𝑗 where decreasing 𝑏𝑖 to 𝑣𝑖 causes a tie with zero
payoff for player 𝑖 (and everybody else);
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3. If there is 𝑘 ≠ 𝑖 such that 𝑏𝑘 > max𝑗≠𝑘 𝑏𝑗 > 𝑣𝑖, then
𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 0 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖);

4. If there are 𝑘 ≠ 𝑙 such that 𝑏𝑘 = 𝑏𝑙 = max𝑗 𝑏𝑗 > 𝑣𝑖, then
𝑢𝑖(𝑏𝑖, 𝑏−𝑖; 𝑣𝑖) = 0 = 𝑢𝑖(𝑣𝑖, 𝑏−𝑖; 𝑣𝑖).

9.2.3 First-Price Auction

Consider now the First-Price Auction. Here the highest bidder wins and pays his bid. Let us impose a
(reasonable) assumption that no player bids more than his private value. We shall now show that there
are no dominant strategies.

Assume the opposite, i.e. that there is a very weakly dominant strategy 𝑠𝑖 of player 𝑖.

Counter-example idea

Intuitively, if player 𝑖 wins against some bids of his opponents, then his bid is strictly larger than
the bids of all his opponents. Hence he can slightly decrease his bid and still win.

Formally, assume that all other players bid 0, i.e. 𝑏𝑗 = 0 for 𝑗 ≠ 𝑖, and let 𝑣𝑖 > 0. If 𝑠𝑖(𝑣𝑖) > 0, then

𝑢𝑖(𝑠𝑖(𝑣𝑖), 𝑏−𝑖; 𝑣𝑖) = 𝑣𝑖 − 𝑠𝑖(𝑣𝑖) < 𝑣𝑖 − 1
2𝑠𝑖(𝑣𝑖) = 𝑢𝑖 (12𝑠𝑖(𝑣𝑖), 𝑏−𝑖; 𝑣𝑖) .

On the other hand, if 𝑠𝑖(𝑣𝑖) = 0, then
𝑢𝑖(𝑠𝑖(𝑣𝑖), 𝑏−𝑖; 𝑣𝑖) = 0 < 𝑣𝑖 − 1

2𝑣𝑖 = 𝑢𝑖 (12𝑣𝑖, 𝑏−𝑖; 𝑣𝑖) .

Hence 𝑠𝑖 cannot be very weakly dominant (and thus neither weakly, nor strictly). Similarly, we will show,
using again a counter-example, that there is no ex-post Nash equilibrium. Therefore, let us assume the
pure strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) is an ex-post Nash equilibrium. Consider 0 < 𝑣1 < ⋯ < 𝑣𝑛−1 and
define

𝑀 = max {𝑠𝑖(𝑣𝑖)| 𝑖 ∈ {1, … , 𝑛 − 1}} .
Let 𝑣𝑛 = 𝑀 + 1. If player 𝑛 wins, i.e. 𝑠𝑛(𝑣𝑛) > 𝑀 , then

𝑢𝑛(𝑠𝑛(𝑣𝑛), 𝑠−𝑖(𝑣−𝑖); 𝑣𝑛) = 𝑣𝑛 − 𝑠𝑛(𝑣𝑛)
< 𝑣𝑛 − (𝑠𝑛(𝑣𝑛) − 𝜀)
= 𝑢𝑛(𝑠𝑛(𝑣𝑛) − 𝜀, 𝑠−𝑖(𝑣−𝑖); 𝑣𝑛)

for 𝜀 ∈ (0, 𝑠𝑛(𝑣𝑛) − 𝑀) (i.e. player 𝑛 may help himself by lowering his bid slightly). If player 𝑛 does not
win, i.e. 𝑠𝑛(𝑣𝑛) ≤ 𝑀 < 𝑀 + 1 = 𝑣𝑛, then for 𝜀 ∈ (0, 1), e.g. 𝜀 = 1

2 , we get

𝑢𝑛(𝑠𝑛(𝑣𝑛), 𝑠−𝑖(𝑣−𝑖); 𝑣𝑛) = 0 < 1
2 = 𝑢𝑛(𝑣𝑛 − 𝜀, 𝑠−𝑖(𝑣−𝑖); 𝑣𝑛),

i.e. player 𝑛 may help himself by playing 𝑣𝑛 − 1
2 . This concludes the counter-example.
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9.2.4 Summary

To summarize, for Second-Price Auctions, there is an ex-post Nash equilibrium in weakly dominant strate-
gies and it is incentive-compatible (players are self-motivated to bid their private value). On the other
hand, for First-Price Auctions, there are no ex-post Nash equilibria or dominant strategies.

9.3 Bayesian Games

Definition 9.7. A Bayesian game 𝐺 = (𝑁 , (𝐴𝑖)𝑖∈𝑁 , (𝑇𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , 𝑃) where (𝑁 , (𝐴𝑖)𝑖∈𝑁 , (𝑇𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 )
is a strict incomplete-information game and 𝑃 is distribution on types, i.e.

• 𝑁 = {1, … , 𝑛} is the set of players;
• 𝐴𝑖 is a set of actions available to player 𝑖;
• 𝑇𝑖 is a set if types available to player 𝑖 (recall that 𝑇 = ∏𝑛

𝑖=1 𝑇𝑖 is the set of all type profiles and
𝐴 = ∏𝑛

𝑖=1 𝐴𝑖 is the set of all action profiles);
• 𝑢𝑖 is a type-dependent payoff function

𝑢𝑖 ∶ 𝐴1 × ⋯ × 𝐴𝑛 × 𝑇𝑖 → ℝ;

• 𝑃 is a (joint) prior distribution over 𝑇 called common prior.

Note

Formally, 𝑃 is a probability measure over an appropriate measurable space on 𝑇 . However, for
simplicity, we will not go into measure theory and only consider two special cases: finite 𝑇 (in
which case 𝑃 ∶ 𝑇 → [0, 1] so that ∑𝑡∈𝑇 𝑃(𝑡) = 1) and 𝑇𝑖 = ℝ for all 𝑖 (in which case we assume that
𝑃 is determined by a (joint) density function 𝑝 on ℝ𝑛).

A play then proceeds as follows:

1. a type profile 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇 is randomly chosen according to 𝑃 ;
2. then each player learns his type 𝑡𝑖 (and it is common knowledge that every player knows his own

type but not the types of other players);
3. each player 𝑖 chooses his action based on 𝑡𝑖;
4. each player receives his payoff 𝑢𝑖(𝑎; 𝑡𝑖).

A pure strategy for player 𝑖 is again a function 𝑠𝑖 ∶ 𝑇𝑖 → 𝐴𝑖. As before, we use 𝑆 to denote the set of all
pure strategy profiles. We also assume that 𝑢𝑖 depends only on 𝑡𝑖 and not on 𝑡−𝑖. This is called the private
values model and can be used to model auctions. This model can be extended to common values by
using 𝑢𝑖(𝑎; 𝑡).
Moreover, we assume the common prior 𝑃 . This means that all players have the same beliefs about the
type profiles. This assumption is rather strong. More general models allow players to have

• their own individual beliefs about types;
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• … beliefs about beliefs about types;
• …. beliefs about beliefs about beliefs about types;
• …. (we get an infinite hierarchy).

But there is a general result of Harsanyi saying that this complicated hierarchy is not necessary – it is
possible to extend the type space in such a way that each player’s “extended type” describes his original
type as well as all of his beliefs.

Example 9.2. Assume that player 1 may suspect that player 2 is angry with him/her but cannot be sure.
In other words, there are two types of player 2 giving two different games. So formally, we have Bayesian
game 𝐺 = (𝑁 , (𝐴𝑖)𝑖∈𝑁 , (𝑇𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , 𝑃) where

• 𝑁 = {1, 2};
• 𝐴1 = 𝐴2 = {𝑂, 𝐹 };
• 𝑇1 = {𝑡1} and 𝑇2 = {𝑡12 , 𝑡22 };
• the payoffs are given by Table 9.1;
• 𝑃(𝑡1, 𝑡12 ) = 𝑃(𝑡1, 𝑡22 ) = 1

2 .

Table 9.1: Rows are chosen by player 1 with type 𝑡1

Table 9.2: The corresponding strategic-form game
for 𝑡2 = 𝑡12

𝐹 𝑂
𝐹 (2, 1) (0, 0)
𝑂 (0, 0) (1, 2)

Table 9.3: The corresponding strategic-form game
for 𝑡2 = 𝑡22

𝐹 𝑂
𝐹 (2, 0) (0, 2)
𝑂 (0, 1) (1, 0)

Example 9.3 (Bayesian sealed-bid Single-item auction). Consider single-item sealed-bid auctions as
Bayesian games: 𝐺 = (𝑁 , (𝐵𝑖)𝑖∈𝑁 , (𝑉𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , 𝑃) where

• the set of players 𝑁 is the set of bidders;
• 𝐵𝑖 = [0,∞) where each action 𝑏𝑖 ∈ 𝐵𝑖 corresponds to the bid 𝑏𝑖;
• 𝑉𝑖 = [0,∞) where each type 𝑣𝑖 ∈ 𝑉𝑖 corresponds to the private value 𝑣𝑖;
• let 𝑣𝑖 ∈ 𝑉𝑖 be the type of player 𝑖 (i.e. his private value), then given an action profile 𝑏 = (𝑏1, … , 𝑏𝑛)
(i.e. bids) we define

– First Price

𝑢𝑖(𝑏; 𝑣𝑖) = {𝑣𝑖 − 𝑏𝑖, 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise,

– Second Price

𝑢𝑖(𝑏; 𝑣𝑖) = {𝑣𝑖 −max𝑗≠𝑖 𝑏𝑗 , 𝑏𝑖 > max𝑗≠𝑖 𝑏𝑗 ,
0, otherwise;
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• 𝑃 is a probability distribution of the private values such that 𝑃(𝑣 ∈ [0, ∞)𝑛) = 1. For example, we
may (and will) assume that 𝑣𝑖 is chosen independently and uniformly from [0, 𝑣max], where 𝑣max is
a fixed given number. Then 𝑃 ∼ Unif([0, 𝑣max]𝑛).

For now, let us assume that each player has only finitely many types, i.e. 𝑇 is finite. Given a type profile
𝑡 = (𝑡1, … , 𝑡𝑛) we denote by 𝑃(𝑡−𝑖|𝑡𝑖) the conditional probability that the opponents of player 𝑖 have types
𝑡−𝑖 conditioned on player 𝑖 having type 𝑡𝑖, i.e.

𝑃(𝑡−𝑖|𝑡𝑖) =
𝑃(𝑡𝑖, 𝑡−𝑖)

∑𝑡′−𝑖∈𝑇−𝑖 𝑃(𝑡𝑖, 𝑡′−𝑖)
.

Tip

Intuitively, 𝑃(𝑡−𝑖|𝑡𝑖) is the maximum information player 𝑖may squeeze out of 𝑃 about possible types
of others once he learns his own type 𝑡𝑖.

Given a pure strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) and type 𝑡𝑖 ∈ 𝑇𝑖 of player 𝑖 the expected payoff for player 𝑖
is

𝑢𝑖(𝑠; 𝑡𝑖) = ∑
𝑡−𝑖∈𝑇−𝑖

𝑢𝑖(𝑠(𝑡𝑖, 𝑡−𝑖); 𝑡𝑖)𝑃(𝑡−𝑖|𝑡𝑖).

Note

This is the conditional expected value of the measurable function 𝑢𝑖 ∘ 𝑠 ∘ (𝑡−𝑖 ↦ (𝑡𝑖, 𝑡−𝑖)) given the
random vector t−𝑖 from the distribution 𝑃(⋅|𝑡𝑖):

𝑢𝑖(𝑠; 𝑡𝑖) = 𝔼 (𝑢𝑖(𝑠(𝑡𝑖, t−𝑖); 𝑡𝑖)) .

Example 9.4. Let us continue with the Bayesian Battle of Sexes example, see Example 9.2, and recall
𝑃(𝑡1, 𝑡12 ) = 𝑃(𝑡1, 𝑡22 ) = 1

2 and

Table 9.4: Rows are chosen by player 1 with type 𝑡1

Table 9.5: The corresponding strategic-form game
for 𝑡2 = 𝑡12

𝐹 𝑂
𝐹 (2, 1) (0, 0)
𝑂 (0, 0) (1, 2)

Table 9.6: The corresponding strategic-form game
for 𝑡2 = 𝑡22

𝐹 𝑂
𝐹 (2, 0) (0, 2)
𝑂 (0, 1) (1, 0)

Consider strategies 𝑠1 of player 1 and 𝑠2 of player 2 defined by
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• 𝑠1(𝑡1) = 𝐹 ;
• 𝑠2(𝑡12 ) = 𝐹 and 𝑠2(𝑡22 ) = 𝑂.

Then

• 𝑢1(𝑠; 𝑡1) = 1
2 ⋅ 2 +

1
2 ⋅ 0 = 1;

• 𝑢2(𝑠; 𝑡12 ) = 1 and 𝑢2(𝑠; 𝑡22 ) = 2.

Example 9.5 (First-Price auction). Consider the first-price auction as a Bayesian game where the types
of players are chosen uniformly and independently from [0, 𝑣max]. Consider a pure strategy profile 𝑣 =
(𝑣1/2, … , 𝑣𝑛/2) (i.e. each player 𝑖 plays 𝑣𝑖/2). Then

𝑢𝑖(𝑣 ; 𝑣𝑖) = 𝑃(player 𝑖 wins) ⋅ 𝑣𝑖/2 + 𝑃(player 𝑖 loses) ⋅ 0
= 𝑃(all player except 𝑖 bid less than 𝑣𝑖) ⋅ 𝑣𝑖/2
iid= ( 𝑣𝑖

𝑣max
)
𝑛−1

⋅ 𝑣𝑖/2

= 𝑣𝑛𝑖
2𝑣𝑛−1max

.

9.3.1 Risk Aversion

We assume that players maximize their expected payoff. Such players are called risk neutral. In general,
there are three kinds of players that can be described using the following experiment. A player can choose
between two possibilities: either get 50$ surely, or get 100$ with probability 1

2 and 0 with probability 1
2 ,

then

• a risk-neutral player has no preference;
• a risk-averse player prefers the first alternative;
• a risk-seeking player prefers the second alternative.

9.3.2 Dominance and Nash Equilibria

A pure strategy 𝑠𝑖 weakly dominates 𝑠′𝑖 ≠ 𝑠𝑖 if for every 𝑡𝑖 ∈ 𝑇𝑖 satisfying 𝑠𝑖(𝑡𝑖) ≠ 𝑠′𝑖 (𝑡𝑖) and every 𝑠−𝑖 ∈ 𝑆−𝑖 it
holds that

𝑢𝑖(𝑠𝑖, 𝑠−𝑖; 𝑡𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖; 𝑡𝑖)
and there exists at least one 𝑠−𝑖 such that the inequality is strict.

Tip

The other modes of dominance are defined analogously. Dominant strategies are, too, defined as
usual.
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Definition 9.8. A pure strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 in the Bayesian game is a pure strategy
Bayesian Nash equilibrium (BNE) if for each player 𝑖 and each type 𝑡𝑖 ∈ 𝑇𝑖 of player 𝑖 and every strategy
𝑠′𝑖 ∈ 𝑆𝑖 we have that

𝑢𝑖(𝑠; 𝑡𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖; 𝑡𝑖).

Example 9.6. Let us return to the Battle of Sexes as a Bayesian game, i.e. 𝑃(𝑡1, 𝑡12 ) = 𝑃(𝑡1, 𝑡22 ) = 1
2 and

Table 9.7: Rows are chosen by player 1 with type 𝑡1

Table 9.8: The corresponding strategic-form game
for 𝑡2 = 𝑡12

𝐹 𝑂
𝐹 (2, 1) (0, 0)
𝑂 (0, 0) (1, 2)

Table 9.9: The corresponding strategic-form game
for 𝑡2 = 𝑡22

𝐹 𝑂
𝐹 (2, 0) (0, 2)
𝑂 (0, 1) (1, 0)

We will use the following notation in this example: (𝑋 , (𝑌 , 𝑍)) means that player 1 players 𝑋 ∈ {𝐹 , 𝑂},
and player 2 plays 𝑌 ∈ {𝐹 , 𝑂} if their type is 𝑡12 and 𝑍 ∈ {𝐹 , 𝑂} otherwise. It is easy to check that (𝐹 , (𝐹 , 𝑂))
is a pure strategy Bayesian Nash equilibrium (BNE). Even though 𝑂 is preferred by player 2, the outcome
(𝑂, 𝑂) cannot occur with a positive probability in any BNE, as

• to ever meet at the opera, player 1 needs to play 𝑂;
• the unique best response of player 2 to 𝑂 is (𝑂, 𝐹 );
• but (𝑂, (𝑂, 𝐹 )) is not a Bayesian Nash equilibrium, because

– the excepted payoff of player 1 at (𝑂, (𝑂, 𝐹 )) is 1
2 ;

– on the other hand, the expected payoff of player 1 at (𝐹 , (𝐹 , 𝑂)) is 1.

9.3.3 Auctions as Bayesian Games

Consider the second-price sealed-bid auction as a Bayesian game where the types of players are chosen
according to an arbitrary distribution.

Theorem 9.2. In a second-price sealed-bid auction, with any probability distribution 𝑃 , the truth revealing
profile of bids, i.e. 𝑣 = (𝑣1, … , 𝑣𝑛), is a weakly dominant strategy profile.

Proof. The same exact proof as for the strict incomplete-information games can be repeated, as we did
not assume the players to have a common prior.

Now consider the first-price sealed-bid auction as a Bayesian game with some prior distribution 𝑃 . Note
that bidding truthfully does not have to be a dominant strategy. For example, if player 𝑖 knows that (with
high probability) his value 𝑣𝑖 is much larger than max𝑗≠𝑖 𝑣𝑗 , he will not waste money and bid less than 𝑣𝑖.
So is there a pure strategy Bayesian Nash equilibrium?
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Theorem 9.3. Assume that for all players 𝑖 the type of player 𝑖 is chosen independently and uniformly from
[0, 𝑣max]. Consider a pure strategy profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝑆 where 𝑠𝑖(𝑣𝑖) = 𝑛−1

𝑛 𝑣𝑖 for every player 𝑖 and every
private value 𝑣𝑖. Then 𝑠 is a Bayesian Nash equilibrium.

Hence we can see that there are, in some sense, “optimal” strategies for players in both types of auctions,
but then a question arises which one is better for the auctioneer (in terms of expected revenue)?

Consider the first and second price sealed-bid auctions. For simplicity, assume that the type (their private
value) of each player is chosen independently and uniformly from [0, 1], then

• in the first-price auction, players bid 𝑛−1
𝑛 𝑣𝑖 Thus the probability distribution (the cumulative distri-

bution function) of the revenue is

𝐹(𝑥) = 𝑃 (max𝑗
𝑛 − 1
𝑛 𝑣𝑗 ≤ 𝑥) = 𝑃 (max𝑗 𝑣𝑗 ≤ 𝑛𝑥

𝑛 − 1) = ( 𝑛𝑥
𝑛 − 1)

𝑛
.

It is then straightforward to show that the expected maximum bid in the first-price auction (i.e. the
revenue) is 𝑛−1

𝑛+1 ;
• in the second-price auction, players bid 𝑣𝑖. However, the revenue is the expected second-largest
value. Thus the distribution of the revenue2 is

𝐹(𝑥) = 𝑃 (max𝑗 𝑣𝑗 ≤ 𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
tie or too small bids

+
𝑛
∑
𝑖=1

𝑃 (𝑣𝑖 > 𝑥 ∧ ∀𝑗 ≠ 𝑖 ∶ 𝑣𝑗 ≤ 𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

one of the players bids enough

.

Amazingly, this also gives the expectation 𝑛−1
𝑛+1 .

This result is a special case of a rather general revenue equivalence theorem, first proven by Vickrey
(1961) and then generalized by Myerson (1981).

Note

Both Vickrey and Myerson were awarded Nobel Price in economics for their contribution to the
auction theory.

Theorem 9.4 (Revenue Equivalence). Assume that each of 𝑛 risk-neutral players has independent private
values drawn from a common cumulative distribution function 𝐹(𝑥) which is continuous and strictly in-
creasing on an interval [𝑣min, 𝑣max] (the probability 𝑣𝑖 ∉ [𝑣min, 𝑣max] is zero). Then any efficient auction
mechanism in which any player with value 𝑣min has expected payoff zero yields the same expected revenue.

Here efficient means that the auction has a symmetric and increasing Bayesian Nash equilibrium in each
of 𝑣𝑖 and always allocates the item to the player with the highest bid.

2For more information about the expected revenues, see this document.
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Note

The Theorem 9.4 is not necessary for the exam.
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